Suppr超能文献

分段增长混合模型的贝叶斯方法:学校心理学中的问题与应用

Bayesian approach to piecewise growth mixture modeling: Issues and applications in school psychology.

作者信息

Heo Ihnwhi, Depaoli Sarah, Jia Fan, Liu Haiyan

机构信息

Department of Psychological Sciences, University of California, Merced, United States.

Department of Psychological Sciences, University of California, Merced, United States.

出版信息

J Sch Psychol. 2024 Dec;107:101366. doi: 10.1016/j.jsp.2024.101366. Epub 2024 Sep 27.

Abstract

Bayesian piecewise growth mixture models (PGMMs) are a powerful statistical tool based on the Bayesian framework for modeling nonlinear, phasic developmental trajectories of heterogeneous subpopulations over time. Although Bayesian PGMMs can benefit school psychology research, their empirical applications within the field remain limited. This article introduces Bayesian PGMMs, addresses three key methodological considerations (i.e., class separation, class enumeration, and prior sensitivity), and provides practical guidance for their implementation. By analyzing a dataset from the Early Childhood Longitudinal Study-Kindergarten Cohort, we illustrate the application of Bayesian PGMMs to model piecewise growth trajectories of mathematics achievement across latent classes. We underscore the importance of considering both statistical criteria and substantive theories when making decisions in analytic procedures. Additionally, we discuss the importance of transparent reporting of the results and provide caveats for researchers in the field to promote the wide usage of Bayesian PGMMs.

摘要

贝叶斯分段增长混合模型(PGMMs)是一种基于贝叶斯框架的强大统计工具,用于对异质子群体随时间的非线性、阶段性发展轨迹进行建模。尽管贝叶斯PGMMs可以为学校心理学研究带来益处,但其在该领域的实证应用仍然有限。本文介绍了贝叶斯PGMMs,阐述了三个关键的方法学考量(即类别分离、类别枚举和先验敏感性),并为其实施提供了实践指导。通过分析来自幼儿纵向研究——幼儿园队列的数据集,我们展示了贝叶斯PGMMs在对潜在类别中数学成绩的分段增长轨迹进行建模方面的应用。我们强调在分析程序中做出决策时同时考虑统计标准和实质理论的重要性。此外,我们讨论了结果透明报告的重要性,并为该领域的研究人员提供了注意事项,以促进贝叶斯PGMMs的广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验