Suppr超能文献

通过高效组装蓝藻核酮糖-1,5-二磷酸羧化酶和羧酶体在大肠杆菌中构建二氧化碳固定模块

Engineering CO-fixing modules in Escherichia coli via efficient assembly of cyanobacterial Rubisco and carboxysomes.

作者信息

Sun Yaqi, Chen Taiyu, Ge Xingwu, Ni Tao, Dykes Gregory F, Zhang Peijun, Huang Fang, Liu Lu-Ning

机构信息

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.

出版信息

Plant Commun. 2025 Mar 10;6(3):101217. doi: 10.1016/j.xplc.2024.101217. Epub 2024 Dec 6.

Abstract

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for conversion of atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, together with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments known as carboxysomes. The polyhedral carboxysome shell ensures the dense packaging of Rubisco and creates a high-CO internal environment to facilitate CO fixation. Rubisco and carboxysomes have been popular targets for bioengineering, with the intent of enhancing plant photosynthesis, crop yields, and biofuel production. However, efficient generation of Form 1B Rubisco and cyanobacterial β-carboxysomes in heterologous systems remains a challenge. Here, we developed genetic systems to efficiently engineer functional cyanobacterial Form 1B Rubisco in Escherichia coli by incorporating Rubisco assembly factor Raf1 and modulating the RbcL/S stoichiometry. We then reconstituted catalytically active β-carboxysomes in E. coli with cognate Form 1B Rubisco by fine-tuning the expression levels of individual β-carboxysome components. In addition, we investigated the mechanism of Rubisco encapsulation into carboxysomes by constructing hybrid carboxysomes; this was achieved by creating a chimeric encapsulation peptide incorporating small sub-unit-like domains, which enabled the encapsulation of Form 1B Rubisco into α-carboxysome shells. Our study provides insights into the assembly mechanisms of plant-like Form 1B Rubisco and the principles of its encapsulation in both β-carboxysomes and hybrid carboxysomes, highlighting the inherent modularity of carboxysome structures. These findings lay the framework for rational design and repurposing of CO-fixing modules in bioengineering applications, e.g., crop engineering, biocatalyst production, and molecule delivery.

摘要

核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)是将大气中的二氧化碳转化为有机分子的关键酶,在全球碳循环中起着至关重要的作用。在蓝细菌和一些化能自养生物中,Rubisco复合物与碳酸酐酶一起被包裹在称为羧酶体的特定蛋白质微区室中。多面体羧酶体外壳确保了Rubisco的紧密包装,并创造了一个高二氧化碳的内部环境以促进二氧化碳固定。Rubisco和羧酶体一直是生物工程的热门目标,旨在提高植物光合作用、作物产量和生物燃料产量。然而,在异源系统中高效生成1B型Rubisco和蓝细菌β-羧酶体仍然是一个挑战。在这里,我们开发了遗传系统,通过整合Rubisco组装因子Raf1并调节RbcL/S化学计量比,在大肠杆菌中高效工程化功能性蓝细菌1B型Rubisco。然后,我们通过微调单个β-羧酶体组分的表达水平,在大肠杆菌中用同源1B型Rubisco重建了具有催化活性的β-羧酶体。此外,我们通过构建杂合羧酶体研究了Rubisco封装到羧酶体中的机制;这是通过创建一个包含小亚基样结构域的嵌合封装肽来实现的,该肽能够将1B型Rubisco封装到α-羧酶体外壳中。我们的研究深入了解了植物样1B型Rubisco的组装机制及其在β-羧酶体和杂合羧酶体中封装的原理,突出了羧酶体结构固有的模块化。这些发现为生物工程应用(如作物工程、生物催化剂生产和分子递送)中二氧化碳固定模块的合理设计和重新利用奠定了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8975/11956089/5cd0028281c8/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验