Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
mBio. 2024 Oct 16;15(10):e0135824. doi: 10.1128/mbio.01358-24. Epub 2024 Aug 29.
Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.
Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.
羧基体是一种蛋白细胞器,具有二十面体的蛋白外壳,其内包含固碳酶——核酮糖-1,5-二磷酸羧化酶加氧酶(Rubisco)和碳酸酐酶。结构上无规则的支架蛋白 CsoS2 通过连接外壳和货物酶,在α-羧基体的构建中起着至关重要的作用。CsoS2 的 N 端结构域与 Rubisco 结合,并促进 Rubisco 在α-羧基体中的包装,而 CsoS2 的 C 端结构域(CsoS2-C)与外壳结合并促进外壳组装。然而,CsoS2 的中间区域(CsoS2-M)的作用仍然难以捉摸。在这里,我们通过在没有货物的情况下生成一系列重组外壳变体,深入研究了 CsoS2-M 在α-羧基体外壳组装中的作用。我们的结果表明,CsoS2-M 辅助 CsoS2-C 组装α-羧基体外壳,并通过增强在 facet-facet 界面和平面外壳表面上的外壳蛋白的关联,在塑造α-羧基体外壳方面发挥重要作用。此外,CsoS2-M 负责将 CsoS2 的 C 端截断同工型 CsoS2A 募集到α-羧基体中,这对于 Rubisco 封装和包装至关重要。这项研究不仅加深了我们对羧基体外壳如何构建和调节的认识,而且为基于羧基体的纳米结构的工程化和再利用奠定了基础,以实现各种生物技术目的。
羧基体是蓝细菌和许多变形菌中细胞器样结构的典范。这些纳米级隔室将 Rubisco 和碳酸酐酶封闭在二十面体病毒样外壳内,以提高 CO2 固定率,在全球碳循环中起着至关重要的作用。了解羧基体的形成不仅对基础研究很重要,而且在生物工程应用中重新利用羧基体也有很大的希望。在这项研究中,我们专注于一种称为 CsoS2 的特定支架蛋白,它参与促进α-型羧基体的组装。通过破译 CsoS2 不同部分的功能,特别是其中间区域的功能,我们从分子水平上提供了关于 CsoS2 如何驱动羧基体逐步组装的新见解。这些知识将指导羧基体纳米结构的合理设计和重新编程,以实现许多生物技术应用。