Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
School of Life Sciences, Central South University, Changsha 410017, China.
Biomacromolecules. 2022 Oct 10;23(10):4339-4348. doi: 10.1021/acs.biomac.2c00781. Epub 2022 Sep 2.
The carboxysome is a protein-based nanoscale organelle in cyanobacteria and many proteobacteria, which encapsulates the key CO-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase (CA) within a polyhedral protein shell. The intrinsic self-assembly and architectural features of carboxysomes and the semipermeability of the protein shell provide the foundation for the accumulation of CO within carboxysomes and enhanced carboxylation. Here, we develop an approach to determine the interior pH conditions and inorganic carbon accumulation within an α-carboxysome shell derived from a chemoautotrophic proteobacterium and evaluate the shell permeability. By incorporating a pH reporter, pHluorin2, within empty α-carboxysome shells produced in , we probe the interior pH of the protein shells with and without CA. Our and results demonstrate a lower interior pH of α-carboxysome shells than the cytoplasmic pH and buffer pH, as well as the modulation of the interior pH in response to changes in external environments, indicating the shell permeability to bicarbonate ions and protons. We further determine the saturated HCO concentration of 15 mM within α-carboxysome shells and show the CA-mediated increase in the interior CO level. Uncovering the interior physiochemical microenvironment of carboxysomes is crucial for understanding the mechanisms underlying carboxysomal shell permeability and enhancement of Rubisco carboxylation within carboxysomes. Such fundamental knowledge may inform reprogramming carboxysomes to improve metabolism and recruit foreign enzymes for enhanced catalytical performance.
羧基体是一种存在于蓝细菌和许多变形菌中的蛋白纳米尺度细胞器,其内部包含核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)和碳酸酐酶(CA)等关键 CO 固定酶。羧基体的内在自组装和结构特性以及蛋白壳的半透性为 CO 在羧基体中的积累和增强的羧化作用提供了基础。在这里,我们开发了一种方法来确定来源于化能自养菌的α-羧基体壳内的内部 pH 值条件和无机碳积累情况,并评估壳的通透性。通过在化能自养菌中产生的空的α-羧基体壳内整合 pH 报告蛋白 pHluorin2,我们在有无 CA 的情况下探测蛋白壳内的内部 pH 值。我们的 和 结果表明,α-羧基体壳内的内部 pH 值低于细胞质 pH 值和缓冲 pH 值,并且对外部环境变化的内部 pH 值的调节表明了壳对碳酸氢根离子和质子的通透性。我们进一步确定了α-羧基体壳内饱和 HCO3-浓度为 15mM,并显示了 CA 介导的内部 CO2 水平增加。揭示羧基体的内部理化微环境对于理解羧基体壳通透性和增强 Rubisco 羧化作用的机制至关重要。这种基础知识可能有助于重新编程羧基体以改善代谢并招募外源酶以提高催化性能。