Wu Jiangfeng, Guo Yinghong, Wu Chao, Wang Zhengping, Sun Yue, Xu Dong
Department of Ultrasonography, Dongyang People's Hospital, Dongyang, Zhejiang, China.
Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
J Invest Surg. 2024 Dec;37(1):2436050. doi: 10.1080/08941939.2024.2436050. Epub 2024 Dec 8.
This study developed a nomogram combining longitudinal and transverse ultrasound radiomics with clinical factors to identify human epidermal growth factor receptor 2 (HER2) status in invasive breast cancer (BC).
We analyzed 537 invasive BC patients from two hospitals: 436 in the training cohort (Hospital A) and 101 in the test cohort (Hospital B). From longitudinal and transverse ultrasound planes, 788 radiomics features were extracted, with dimensionality reduced using least absolute shrinkage and selection operator regression. A radiomics nomogram integrating clinical predictors and radiomics scores (Rad-scores) was constructed.
Fifteen and sixteen features from longitudinal and transverse ultrasound planes, respectively, were selected to generate Rad-scores, which differed significantly between HER2-positive and HER2-negative groups in both cohorts ( < 0.05). The combined radiomics model outperformed individual models with AUCs of 0.783 and 0.762 in the training and external test cohorts, respectively. Tumor size was an independent clinical predictor. The nomogram, incorporating Rad-scores and tumor size, achieved AUCs of 0.790 (training cohort) and 0.774 (test cohort). Decision curve analysis demonstrated its potential clinical utility.
A biplanar ultrasound radiomics nomogram effectively predicts HER2 status in invasive BC, potentially reducing the need for biopsies and supporting personalized treatment strategies.
本研究开发了一种将纵向和横向超声影像组学与临床因素相结合的列线图,以识别浸润性乳腺癌(BC)中的人表皮生长因子受体2(HER2)状态。
我们分析了来自两家医院的537例浸润性BC患者:训练队列(医院A)中有436例,测试队列(医院B)中有101例。从纵向和横向超声平面提取了788个影像组学特征,并使用最小绝对收缩和选择算子回归进行降维。构建了一个整合临床预测因子和影像组学评分(Rad评分)的影像组学列线图。
分别从纵向和横向超声平面选择了15个和16个特征来生成Rad评分,在两个队列中,HER2阳性组和HER2阴性组的Rad评分均有显著差异(<0.05)。联合影像组学模型在训练队列和外部测试队列中的表现均优于单个模型,AUC分别为0.783和0.762。肿瘤大小是一个独立的临床预测因子。纳入Rad评分和肿瘤大小的列线图在训练队列和测试队列中的AUC分别为0.790和0.774。决策曲线分析证明了其潜在的临床应用价值。
双平面超声影像组学列线图可有效预测浸润性BC中的HER2状态,可能减少活检需求并支持个性化治疗策略。