Weber Callie M, Moiz Bilal, Pena Gabriel S, Kheradmand Marzyeh, Wunderler Brooke, Kettula Claire, Sangha Gurneet S, Smith J Carson, Clyne Alisa Morss
Department of Bioengineering, University of Maryland; College Park, MD, 20742, United States.
Department of Kinesiology, University of Maryland, College Park, MD, 20742, United States.
EBioMedicine. 2025 Jan;111:105487. doi: 10.1016/j.ebiom.2024.105487. Epub 2024 Dec 7.
The APOE-ε4 genotype is the highest genetic risk factor for Alzheimer's disease (AD), and exercise training can reduce the risk of AD. Two early pathologies of AD are degradation of tight junctions between brain microvascular endothelial cells (BMEC) and brain glucose hypometabolism. Therefore, the objective of this work was to determine how the APOE-ε4 genotype and serum from exercise trained individuals impacts BMEC barrier function and metabolism.
iPSC homozygous for the APOE-ε3 and APOE-ε4 alleles were differentiated to BMEC-like cells and used to measure barrier function and metabolism. To investigate exercise effects, serum was collected from older adults pre- and post- 6 months of exercise training (n = 9 participants per genotype). APOE-ε3 and APOE-ε4 BMEC were treated with genotype-matched serum, and then barrier function and metabolism were measured.
APOE-ε4 genotype impaired BMEC barrier function and metabolism by reducing sirtuin 1 (SIRT1) levels by 27% (p = 0.0188) and baseline insulin signalling by 37% (p = 0.0186) compared to APOE-ε3 BMEC. Exercise-trained serum increased SIRT1 by 33% (p = 0.0043) in APOE-ε3 BMEC but decreased SIRT1 by 22% (p = 0.0004) in APOE ε4 BMEC.
APOE-ε4 directly impairs glucose metabolism and barrier function. Serum from exercise trained individuals alters SIRT1 in a genotype-dependent manner but may require additional cues from exercise to decrease AD pathologies.
Brain and Behaviour Initiative at the University of Maryland through the Seed Grant Program, NSF-GRFP DGE 1840340, Fischell Fellowship in Biomedical Engineering, NSF CBET-2211966 and DGE-1632976, National Niemann-Pick Disease Foundation, University of Maryland ASPIRE Program, NIH R01HL165193, R01HL140239-01, and R01AG057552.
APOE-ε4基因型是阿尔茨海默病(AD)最大的遗传风险因素,而运动训练可降低患AD的风险。AD的两个早期病理特征是脑微血管内皮细胞(BMEC)之间紧密连接的降解和脑葡萄糖代谢减退。因此,本研究的目的是确定APOE-ε4基因型和运动训练个体的血清如何影响BMEC的屏障功能和代谢。
将携带APOE-ε3和APOE-ε4等位基因的纯合诱导多能干细胞(iPSC)分化为类BMEC细胞,用于测量屏障功能和代谢。为了研究运动的影响,在运动训练前后6个月收集老年人的血清(每种基因型n = 9名参与者)。用基因型匹配的血清处理APOE-ε3和APOE-ε4 BMEC,然后测量屏障功能和代谢。
与APOE-ε3 BMEC相比,APOE-ε4基因型通过使沉默调节蛋白1(SIRT1)水平降低27%(p = 0.0188)和基线胰岛素信号降低37%(p = 0.0186),损害了BMEC的屏障功能和代谢。运动训练后的血清使APOE-ε3 BMEC中的SIRT1增加了33%(p = 0.0043),但使APOE-ε4 BMEC中的SIRT1降低了22%(p = 0.0004)。
APOE-ε4直接损害葡萄糖代谢和屏障功能。运动训练个体的血清以基因型依赖的方式改变SIRT1,但可能需要运动的额外信号来减少AD病理。
马里兰大学脑与行为倡议通过种子基金计划、美国国家科学基金会研究生研究奖学金计划(NSF-GRFP)DGE 1840340、生物医学工程费舍尔奖学金、美国国家科学基金会CBET-2211966和DGE-1632976、国家尼曼-匹克病基金会、马里兰大学ASPIRE计划、美国国立卫生研究院R01HL165193、R01HL140239-01和R01AG057552提供。