Suppr超能文献

- 金属氧化物纳米颗粒诱导的肺毒性外推:数据挖掘

-to- Extrapolation on Lung Toxicity Induced by Metal Oxide Nanoparticles Data-Mining.

作者信息

Huang Yang, Wang Tianqin, Li Yue, Wang Zhe, Cai Xiaoming, Chen Jingwen, Li Ruibin, Li Xuehua

机构信息

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.

出版信息

Environ Sci Technol. 2025 Jan 28;59(3):1673-1682. doi: 10.1021/acs.est.4c06186. Epub 2024 Dec 8.

Abstract

While analyses are commonly employed for chemical risk assessments, predicting chronic lung toxicity induced by engineered nanoparticles (ENMs) still faces many challenges due to complex interactions at multiple nanobio interfaces. In this study, we developed a rigorous method to compile published evidence on the lung toxicity of metal oxide nanoparticles (MeONPs) and revealed previously overlooked -to- extrapolation (IVIVE) relationships. A comprehensive multidimensional data set containing 1102 data points, 75 pulmonary toxicological biomarkers, and 20 features (covering effects, physicochemical properties, and exposure conditions) was constructed. An IVIVE approach that related effects at the cellular level to lung toxicity in rodent model was established with prediction accuracy reaching 89 and 80% in training and test sets. Experimental validation was conducted by testing chronic lung fibrosis of 8 new MeONPs in 32 independent mice, with prediction accuracy reaching 88%. The IVIVE model indicated that the proinflammatory cytokine IL-1β in THP-1 cells could serve as an marker to predict lung toxicity. The IVIVE model showed great promise for minimizing unnecessary animal tests and understanding toxicological mechanisms.

摘要

虽然分析方法通常用于化学风险评估,但由于在多个纳米生物界面存在复杂的相互作用,预测工程纳米颗粒(ENM)引起的慢性肺毒性仍然面临许多挑战。在本研究中,我们开发了一种严谨的方法来汇编已发表的关于金属氧化物纳米颗粒(MeONP)肺毒性的证据,并揭示了以前被忽视的体外到体内外推(IVIVE)关系。构建了一个包含1102个数据点、75个肺毒理学生物标志物和20个特征(涵盖效应、物理化学性质和暴露条件)的综合多维数据集。建立了一种将细胞水平的效应与啮齿动物模型中的肺毒性相关联的IVIVE方法,在训练集和测试集中的预测准确率分别达到89%和80%。通过在32只独立小鼠中测试8种新的MeONP的慢性肺纤维化进行了实验验证,预测准确率达到88%。IVIVE模型表明,THP-1细胞中的促炎细胞因子IL-1β可作为预测肺毒性的标志物。IVIVE模型在最大限度减少不必要的动物试验和理解毒理机制方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验