Suppr超能文献

asmbPLS:利用多组学数据进行生物标志物识别和患者生存预测

asmbPLS: biomarker identification and patient survival prediction with multi-omics data.

作者信息

Zhang Runzhi, Datta Susmita

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, United States.

出版信息

Front Genet. 2024 Nov 22;15:1444054. doi: 10.3389/fgene.2024.1444054. eCollection 2024.

Abstract

INTRODUCTION

With the advancement of high-throughput studies, an increasing wealth of high-dimensional multi-omics data is being collected from the same patient cohort. However, leveraging this multi-omics data to predict survival outcomes poses a significant challenge due to its complex structure.

METHODS

In this article, we present a novel approach, the Adaptive Sparse Multi-Block Partial Least Squares (asmbPLS) Regression model, which introduces a dynamic assignment of penalty factors to distinct blocks within various PLS components, facilitating effective feature selection and prediction.

RESULTS

We compared the proposed method with several state-of-the-art algorithms encompassing prediction performance, feature selection and computation efficiency. We conducted comprehensive evaluations using both simulated data with various scenarios and a real dataset from the melanoma patients to validate the effectiveness and efficiency of the asmbPLS method. Additionally, we applied the lung squamous cell carcinoma (LUSC) dataset from The Cancer Genome Atlas (TCGA) to further assess the feature selection capability of asmbPLS.

DISCUSSION

The inherent nature of asmbPLS imparts it with higher sensitivity in feature selection compared to other methods. Furthermore, an R package called asmbPLS implementing this method is made publicly available.

摘要

引言

随着高通量研究的进展,越来越多的高维多组学数据正从同一患者队列中收集。然而,由于其结构复杂,利用这些多组学数据预测生存结果面临重大挑战。

方法

在本文中,我们提出了一种新颖的方法,即自适应稀疏多块偏最小二乘(asmbPLS)回归模型,该模型为各个偏最小二乘分量内的不同块引入了惩罚因子的动态分配,有助于进行有效的特征选择和预测。

结果

我们将所提出的方法与几种包括预测性能、特征选择和计算效率的先进算法进行了比较。我们使用具有各种场景的模拟数据和来自黑色素瘤患者的真实数据集进行了全面评估,以验证asmbPLS方法的有效性和效率。此外,我们应用了来自癌症基因组图谱(TCGA)的肺鳞状细胞癌(LUSC)数据集来进一步评估asmbPLS的特征选择能力。

讨论

与其他方法相比,asmbPLS的固有特性使其在特征选择方面具有更高的灵敏度。此外,一个名为asmbPLS的R包实现了该方法并已公开发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验