Suppr超能文献

GCRTcall:一种基于Transformer的纳米孔RNA测序碱基识别器,通过门控卷积和相对位置嵌入联合损失训练进行增强。

GCRTcall: a transformer based basecaller for nanopore RNA sequencing enhanced by gated convolution and relative position embedding via joint loss training.

作者信息

Li Qingwen, Sun Chen, Wang Daqian, Lou Jizhong

机构信息

Key Laboratory of Epigenetic Regulation and Intervention, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Genet. 2024 Nov 22;15:1443532. doi: 10.3389/fgene.2024.1443532. eCollection 2024.

Abstract

Nanopore sequencing, renowned for its ability to sequence DNA and RNA directly with read lengths extending to several hundred kilobases or even megabases, holds significant promise in fields like transcriptomics and other omics studies. Despite its potential, the technology's limited accuracy in base identification has restricted its widespread application. Although many algorithms have been developed to improve DNA decoding, advancements in RNA sequencing remain limited. Addressing this challenge, we introduce GCRTcall, a novel approach integrating Transformer architecture with gated convolutional networks and relative positional encoding for RNA sequencing signal decoding. Our evaluation demonstrates that GCRTcall achieves state-of-the-art performance in RNA basecalling.

摘要

纳米孔测序以其能够直接对DNA和RNA进行测序,读长可延伸至数百千碱基甚至兆碱基而闻名,在转录组学和其他组学研究等领域具有巨大潜力。尽管有其潜力,但该技术在碱基识别方面的准确性有限,限制了其广泛应用。虽然已经开发了许多算法来改进DNA解码,但RNA测序的进展仍然有限。为应对这一挑战,我们引入了GCRTcall,这是一种将Transformer架构与门控卷积网络和相对位置编码相结合的新颖方法,用于RNA测序信号解码。我们的评估表明,GCRTcall在RNA碱基识别中实现了最先进的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f481/11621211/81ed6f28ea05/fgene-15-1443532-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验