Suppr超能文献

从头开始的非规范纳米孔碱基识别能够在单分子水平上使用经过大量修饰的DNA数据进行私密通信。

De novo non-canonical nanopore basecalling enables private communication using heavily-modified DNA data at single-molecule level.

作者信息

Fan Qingyuan, Zhao Xuyang, Li Junyao, Liu Ronghui, Liu Ming, Feng Qishun, Long Yanping, Fu Yang, Zhai Jixian, Pan Qing, Li Yi

机构信息

School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China.

School of Medicine, Southern University of Science and Technology, Shenzhen, China.

出版信息

Nat Commun. 2025 May 2;16(1):4099. doi: 10.1038/s41467-025-59357-2.

Abstract

Hidden messages in DNA molecules by employing chemical modifications has been suggested for private data storage and transmission at high information density. However, rapidly decoding these "molecular keys" with corresponding basecallers remains challenging. We present DeepSME, a nanopore sequencing and deep-learning based framework towards single-molecule encryption, demonstrated by using 5-hydroxymethylcytosine (5hmC) substitution for individual nucleotide recognition rather than sequential interactions. This non-natural, motif-insensitive methylation disrupts ion current, resulting in a readout failure of 67.2%-100%, concealing the privacy within the DNAs. We further develop an alignment-free DeepSME basecaller as a key to reconstitute the digital information. Our three-stage training pipeline, expands k-mer size from 4 to 4, achieving over 92% precision and recall from scratch. DeepSME deciphers fully 5hmC concealed text and image within 16× coverage depth with an F1-score of 86.4%, surpassing all the state-of-the-art basecallers. Demonstrated on edge computing devices, DeepSME holds supreme potential for DNA-based private communications and broader bioengineering and medical applications.

摘要

通过化学修饰在DNA分子中隐藏信息已被提议用于以高信息密度进行私人数据存储和传输。然而,使用相应的碱基识别器快速解码这些“分子密钥”仍然具有挑战性。我们提出了DeepSME,这是一种基于纳米孔测序和深度学习的单分子加密框架,通过使用5-羟甲基胞嘧啶(5hmC)替代来进行单个核苷酸识别,而不是连续相互作用来证明这一点。这种非天然的、对基序不敏感的甲基化会破坏离子电流,导致67.2%-100%的读出失败,从而在DNA中隐藏隐私。我们进一步开发了一种无比对的DeepSME碱基识别器作为重建数字信息的密钥。我们的三阶段训练管道将k-mer大小从4扩展到4,从头开始实现了超过92%的精度和召回率。DeepSME在16倍覆盖深度内能够完全解密5hmC隐藏的文本和图像,F1分数为86.4%,超过了所有最先进的碱基识别器。在边缘计算设备上得到证明,DeepSME在基于DNA的私人通信以及更广泛的生物工程和医学应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e04a/12048662/66d999b6551a/41467_2025_59357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验