Suppr超能文献

用于横向亚光学分辨率弹性成像的光声透镜

Optoacoustic lenses for lateral sub-optical resolution elasticity imaging.

作者信息

Yao Mengting, Fuentes-Domínguez Rafael, Cavera Salvatore La, Pérez-Cota Fernando, Smith Richard J, Clark Matt

机构信息

Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.

出版信息

Photoacoustics. 2024 Nov 16;41:100663. doi: 10.1016/j.pacs.2024.100663. eCollection 2025 Feb.

Abstract

In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time. Agreement of the experiment with a numerical model suggests that we can generate a focused acoustic beam down to 250 nm. A clear focusing effect is observed experimentally as a modulation of the envelope of the time-resolved Brillouin scattering (TRBS) signal. These findings are a crucial step toward their application in high-resolution acoustic microscopy. This work experimentally demonstrates a method to narrow the lateral size of picosecond laser-generated phonon fields in an aqueous environment, making it well-suited for 3D imaging applications in biological systems using TRBS.

摘要

在本文中,我们首次展示了利用皮秒超声和布里渊光散射对在水中传播的吉赫兹相干声子脉冲进行聚焦。我们通过使用平面菲涅耳波带片和不同焦距的凹透镜来实现这一点。泵浦光照射光声透镜会产生聚焦声场,而布里渊散射探测光则允许随时间连续监测声场。实验与数值模型的吻合表明,我们能够生成低至250纳米的聚焦声束。通过对时间分辨布里渊散射(TRBS)信号包络的调制,实验中观察到了明显的聚焦效应。这些发现是朝着其在高分辨率声学显微镜中的应用迈出的关键一步。这项工作通过实验证明了一种在水性环境中缩小皮秒激光产生的声子场横向尺寸的方法,使其非常适合使用TRBS在生物系统中进行3D成像应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44cb/11625152/60ee21565f7b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验