Suppr超能文献

一种基于计算机视觉技术的用于贻贝养殖场的新型多目标跟踪管道。

A new multi-object tracking pipeline based on computer vision techniques for mussel farms.

作者信息

Zeng Dylon, Liu Ivy, Bi Ying, Vennell Ross, Briscoe Dana, Xue Bing, Zhang Mengjie

机构信息

School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand.

School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand.

出版信息

J R Soc N Z. 2023 Jul 30;55(1):62-81. doi: 10.1080/03036758.2023.2240466. eCollection 2025.

Abstract

Mussel farming is a thriving industry in New Zealand and is crucial to local communities. Currently, farmers keep track of their mussel floats by taking regular boat trips to the farm. This is a labour-intensive assignment. Integrating computer vision techniques into aquafarms will significantly alleviate the pressure on mussel farmers. However, tracking a large number of identical targets under various image conditions raises a considerable challenge. This paper proposes a new computer vision-based pipeline to automatically detect and track mussel floats in images. The proposed pipeline consists of three steps, i.e. float detection, float description, and float matching. In the first step, a new detector based on several image processing operators is used to detect mussel floats of all sizes in the images. Then a new descriptor is employed to provide unique identity markers to mussel floats based on the relative positions of their neighbours. Finally, float matching across adjacent frames is done by image registration. Experimental results on the images taken in Marlborough Sounds New Zealand have shown that the proposed pipeline achieves an 82.9% MOTA - 18% higher than current deep learning-based approaches - without the need for training.

摘要

贻贝养殖在新西兰是一个蓬勃发展的产业,对当地社区至关重要。目前,养殖户通过定期乘船前往养殖场来跟踪他们的贻贝浮标。这是一项劳动密集型任务。将计算机视觉技术集成到水产养殖场将显著减轻贻贝养殖户的压力。然而,在各种图像条件下跟踪大量相同目标带来了相当大的挑战。本文提出了一种基于计算机视觉的新流程,用于自动检测和跟踪图像中的贻贝浮标。所提出的流程包括三个步骤,即浮标检测、浮标描述和浮标匹配。在第一步中,基于几个图像处理算子的新检测器用于检测图像中各种大小的贻贝浮标。然后采用一种新的描述符,根据贻贝浮标相邻部分的相对位置为其提供唯一的身份标记。最后,通过图像配准实现相邻帧之间的浮标匹配。在新西兰马尔堡峡湾拍摄的图像上的实验结果表明,所提出的流程实现了82.9%的多目标跟踪准确率(MOTA)——比当前基于深度学习的方法高18%——且无需训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f50d/11619019/1ebf8c2ee388/TNZR_A_2240466_F0001_OC.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验