Suppr超能文献

交替磁体的晶体化学与设计原理

Crystal Chemistry and Design Principles of Altermagnets.

作者信息

Wei Chao-Chun, Lawrence Erick, Tran Alyssa, Ji Huiwen

机构信息

Department of Materials Science & Engineering, University of Utah, Salt Lake City, Utah 84112, United States.

Materials Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States.

出版信息

ACS Org Inorg Au. 2024 Oct 23;4(6):604-619. doi: 10.1021/acsorginorgau.4c00064. eCollection 2024 Dec 4.

Abstract

Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.

摘要

近藤磁性最近被确认为一种新型磁相,超越了传统的铁磁性(FM)和反铁磁性(AFM)二分法。其全局补偿磁化强度和定向自旋极化有望带来自旋极化电导率、自旋转移矩、反常霍尔效应、隧穿和巨磁阻等新特性,这些特性对下一代存储设备、磁探测器和能量转换非常有用。尽管这一领域历来由薄膜研究群体主导,但近藤磁性的确定最终依赖于精确的磁结构测定,而这在块状材料中能最有效地完成。我们从材料化学的角度撰写这篇综述,旨在鼓励材料和固态化学家通过利用中子衍射确定磁结构以及进行块状晶体生长以探索奇异特性,从而为这一新兴主题做出贡献。我们首先回顾用于识别近藤磁体的对称分类,并总结化学原理和设计规则,随后讨论与晶体和磁结构对称性相关的独特物理性质。然后回顾已确定近藤磁体的几个主要化合物家族。最后我们展望未来的发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa5d/11621956/b92cc62aaa9c/gg4c00064_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验