Liu Jinjin, Xu Fuyong, Zhao Yingao, Xin Xianwei, Liu Keren, Ma Yuanyuan
Software College of Software, Henan Normal University, Xinxiang, Henan, China.
College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China.
PeerJ Comput Sci. 2024 Sep 24;10:e2330. doi: 10.7717/peerj-cs.2330. eCollection 2024.
With the development of steganography technology, lawbreakers can implement covert communication in social networks more easily, exacerbating network security risks. Sterilization of image steganography methods can eliminate secret messages to block the transmission of illegal covert communication. However, existing methods overly rely on cover-stego image pairs and are unable to sanitize unknown image, which reduces stego image blocking rate in social networks.
To address the above problems, this paper proposes an effective sterilization of image steganography method using self-supervised convolutional neural network (SS-Net), which does not require any prior knowledge of image steganography schemes. SS-Net includes a purification module and a refinement module. Firstly, the pixel-shuffle down-sampling in purification module is adopted to reduce the spatial correlation of pixels in the stgeo image, and improve the learning mode from supervised learning to self-supervised learning. Secondly, centrally masked convolutions and dilated convolution residual blocks are merged to eliminate secret messages and avoid image quality degradation. Finally, a refinement module is employed to improve image texture details and boundaries.
A series of experiments show that SS-Net from BOSSbase test sets is able to balance the destruction of secret messages with image quality, achieving 100% blocking rate of stego image. Meanwhile, our method outperforms the state-of-the-art methods in secret messages elimination ability and image quality preserving ability.
随着隐写技术的发展,不法分子能够更轻松地在社交网络中进行隐蔽通信,加剧了网络安全风险。对图像隐写方法进行去噪处理可以消除秘密消息,从而阻断非法隐蔽通信的传输。然而,现有方法过度依赖载体-隐写图像对,无法对未知图像进行去噪处理,这降低了社交网络中隐写图像的阻断率。
为了解决上述问题,本文提出了一种使用自监督卷积神经网络(SS-Net)的有效图像隐写去噪方法,该方法不需要任何图像隐写方案的先验知识。SS-Net包括一个净化模块和一个细化模块。首先,净化模块采用像素洗牌下采样来降低隐写图像中像素的空间相关性,并将学习模式从监督学习改进为自监督学习。其次,将中心掩码卷积和扩张卷积残差块合并以消除秘密消息并避免图像质量下降。最后,采用细化模块来改善图像纹理细节和边界。
一系列实验表明,来自BOSSbase测试集的SS-Net能够在秘密消息的破坏与图像质量之间取得平衡,实现隐写图像100%的阻断率。同时,我们的方法在秘密消息消除能力和图像质量保持能力方面优于现有方法。