Suppr超能文献

大规模图上的k团计数:一项综述。

k-Clique counting on large scale-graphs: a survey.

作者信息

Çalmaz Büşra, Ergenç Bostanoğlu Belgin

机构信息

Computer Engineering, Izmir Institute of Technology, Izmir, Turkey.

出版信息

PeerJ Comput Sci. 2024 Nov 18;10:e2501. doi: 10.7717/peerj-cs.2501. eCollection 2024.

Abstract

Clique counting is a crucial task in graph mining, as the count of cliques provides different insights across various domains, social and biological network analysis, community detection, recommendation systems, and fraud detection. Counting cliques is algorithmically challenging due to combinatorial explosion, especially for large datasets and larger clique sizes. There are comprehensive surveys and reviews on algorithms for counting subgraphs and triangles (three-clique), but there is a notable lack of reviews addressing k-clique counting algorithms for k > 3. This paper addresses this gap by reviewing clique counting algorithms designed to overcome this challenge. Also, a systematic analysis and comparison of exact and approximation techniques are provided by highlighting their advantages, disadvantages, and suitability for different contexts. It also presents a taxonomy of clique counting methodologies, covering approximate and exact methods and parallelization strategies. The paper aims to enhance understanding of this specific domain and guide future research of k-clique counting in large-scale graphs.

摘要

团计数是图挖掘中的一项关键任务,因为团的数量在各个领域(社交和生物网络分析、社区检测、推荐系统以及欺诈检测)能提供不同的见解。由于组合爆炸问题,团计数在算法上具有挑战性,特别是对于大型数据集和更大的团规模。对于子图和三角形(三团)计数算法有全面的综述,但明显缺乏针对k>3的k团计数算法的综述。本文通过回顾旨在克服这一挑战的团计数算法来填补这一空白。此外,通过突出精确技术和近似技术的优点、缺点以及对不同上下文的适用性,对它们进行了系统的分析和比较。它还提出了团计数方法的分类法,涵盖近似和精确方法以及并行化策略。本文旨在增进对这一特定领域的理解,并指导大规模图中k团计数的未来研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee5/11622928/d4409d1c956f/peerj-cs-10-2501-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验