Suppr超能文献

用于自动驾驶的路面语义分割

Road surface semantic segmentation for autonomous driving.

作者信息

Zhao Huaqi, Wang Su, Peng Xiang, Pan Jeng-Shyang, Wang Rui, Liu Xiaomin

机构信息

The Heilongjiang Provincial Key Laboratory of Autonomous Intelligence and Information Processing, School of Information and Electronic Technology, Jiamusi University, Jiamusi, Heilongjiang, China.

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China.

出版信息

PeerJ Comput Sci. 2024 Sep 25;10:e2250. doi: 10.7717/peerj-cs.2250. eCollection 2024.

Abstract

Although semantic segmentation is widely employed in autonomous driving, its performance in segmenting road surfaces falls short in complex traffic environments. This study proposes a frequency-based semantic segmentation with a transformer (FSSFormer) based on the sensitivity of semantic segmentation to frequency information. Specifically, we propose a weight-sharing factorized attention to select important frequency features that can improve the segmentation performance of overlapping targets. Moreover, to address boundary information loss, we used a cross-attention method combining spatial and frequency features to obtain further detailed pixel information. To improve the segmentation accuracy in complex road scenarios, we adopted a parallel-gated feedforward network segmentation method to encode the position information. Extensive experiments demonstrate that the mIoU of FSSFormer increased by 2% compared with existing segmentation methods on the Cityscapes dataset.

摘要

尽管语义分割在自动驾驶中被广泛应用,但其在复杂交通环境下分割路面的性能仍存在不足。本研究基于语义分割对频率信息的敏感性,提出了一种基于Transformer的频率语义分割方法(FSSFormer)。具体而言,我们提出了一种权重共享因子化注意力机制,以选择能够提高重叠目标分割性能的重要频率特征。此外,为了解决边界信息丢失的问题,我们采用了一种结合空间和频率特征的交叉注意力方法,以获取更详细的像素信息。为了提高在复杂道路场景下的分割精度,我们采用了一种并行门控前馈网络分割方法来编码位置信息。大量实验表明,在Cityscapes数据集上,FSSFormer的平均交并比(mIoU)比现有分割方法提高了2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/11623202/fa43790a4972/peerj-cs-10-2250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验