Suppr超能文献

基于深度学习的股票预测关键步骤分析:文献综述

Analyzing the critical steps in deep learning-based stock forecasting: a literature review.

作者信息

Akşehir Zinnet Duygu, Kılıç Erdal

机构信息

Computer Engineering, Ondokuz Mayis University Samsun, Samsun, Turkey.

出版信息

PeerJ Comput Sci. 2024 Sep 23;10:e2312. doi: 10.7717/peerj-cs.2312. eCollection 2024.

Abstract

Stock market or individual stock forecasting poses a significant challenge due to the influence of uncertainty and dynamic conditions in financial markets. Traditional methods, such as fundamental and technical analysis, have been limited in coping with uncertainty. In recent years, this has led to a growing interest in using deep learning-based models for stock prediction. However, the accuracy and reliability of these models depend on correctly implementing a series of critical steps. These steps include data collection and analysis, feature extraction and selection, noise elimination, model selection and architecture determination, choice of training-test approach, and performance evaluation. This study systematically examined deep learning-based stock forecasting models in the literature, investigating the effects of these steps on the model's forecasting performance. This review focused on the studies between 2020-2024, identifying influential studies by conducting a systematic literature search across three different databases. The identified studies regarding seven critical steps essential for creating successful and reliable prediction models were thoroughly examined. The findings from these examinations were summarized in tables, and the gaps in the literature were detailed. This systematic review not only provides a comprehensive understanding of current studies but also serves as a guide for future research.

摘要

由于金融市场中不确定性和动态条件的影响,股票市场或个股预测面临重大挑战。传统方法,如基本面分析和技术分析,在应对不确定性方面存在局限性。近年来,这使得人们越来越关注使用基于深度学习的模型进行股票预测。然而,这些模型的准确性和可靠性取决于正确实施一系列关键步骤。这些步骤包括数据收集与分析、特征提取与选择、噪声消除、模型选择与架构确定、训练-测试方法的选择以及性能评估。本研究系统地考察了文献中基于深度学习的股票预测模型,研究了这些步骤对模型预测性能的影响。这篇综述聚焦于2020年至2024年期间的研究,通过在三个不同数据库中进行系统的文献检索来识别有影响力的研究。对与创建成功且可靠的预测模型至关重要的七个关键步骤的相关研究进行了全面审查。这些审查结果汇总在表格中,并详细阐述了文献中的空白。这项系统综述不仅提供了对当前研究的全面理解,还为未来研究提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a45/11623133/3306fde13889/peerj-cs-10-2312-g001.jpg

相似文献

7
Multi level perspectives in stock price forecasting: ICE2DE-MDL.股票价格预测中的多层次视角:ICE2DE-MDL
PeerJ Comput Sci. 2024 Jun 24;10:e2125. doi: 10.7717/peerj-cs.2125. eCollection 2024.

本文引用的文献

1
Multi level perspectives in stock price forecasting: ICE2DE-MDL.股票价格预测中的多层次视角:ICE2DE-MDL
PeerJ Comput Sci. 2024 Jun 24;10:e2125. doi: 10.7717/peerj-cs.2125. eCollection 2024.
5
A stock market trading framework based on deep learning architectures.一种基于深度学习架构的股票市场交易框架。
Multimed Tools Appl. 2022;81(10):14153-14171. doi: 10.1007/s11042-022-12328-x. Epub 2022 Feb 25.
6
LSTM-based sentiment analysis for stock price forecast.基于长短期记忆网络的股价预测情感分析。
PeerJ Comput Sci. 2021 Mar 11;7:e408. doi: 10.7717/peerj-cs.408. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验