Suppr超能文献

股票价格预测中的多层次视角:ICE2DE-MDL

Multi level perspectives in stock price forecasting: ICE2DE-MDL.

作者信息

Akşehir Zinnet Duygu, Kılıç Erdal

机构信息

Computer Engineering, Ondokuz Mayis University Samsun, Samsun, Turkey.

出版信息

PeerJ Comput Sci. 2024 Jun 24;10:e2125. doi: 10.7717/peerj-cs.2125. eCollection 2024.

Abstract

This study proposes a novel hybrid model, called ICE2DE-MDL, integrating secondary decomposition, entropy, machine and deep learning methods to predict a stock closing price. In this context, first of all, the noise contained in the financial time series was eliminated. A denoising method, which utilizes entropy and the two-level ICEEMDAN methodology, is suggested to achieve this. Subsequently, we applied many deep learning and machine learning methods, including long-short term memory (LSTM), LSTM-BN, gated recurrent unit (GRU), and SVR, to the IMFs obtained from the decomposition, classifying them as noiseless. Afterward, the best training method was determined for each IMF. Finally, the proposed model's forecast was obtained by hierarchically combining the prediction results of each IMF. The ICE2DE-MDL model was applied to eight stock market indices and three stock data sets, and the next day's closing price of these stock items was predicted. The results indicate that RMSE values ranged from 0.031 to 0.244, MAE values ranged from 0.026 to 0.144, MAPE values ranged from 0.128 to 0.594, and R-squared values ranged from 0.905 to 0.998 for stock indices and stock forecasts. Furthermore, comparisons were made with various hybrid models proposed within the scope of stock forecasting to evaluate the performance of the ICE2DE-MDL model. Upon comparison, The ICE2DE-MDL model demonstrated superior performance relative to existing models in the literature for both forecasting stock market indices and individual stocks. Additionally, to our knowledge, this study is the first to effectively eliminate noise in stock item data using the concepts of entropy and ICEEMDAN. It is also the second study to apply ICEEMDAN to a financial time series prediction problem.

摘要

本研究提出了一种名为ICE2DE-MDL的新型混合模型,该模型整合了二次分解、熵、机器学习和深度学习方法来预测股票收盘价。在此背景下,首先,消除了金融时间序列中包含的噪声。为此,提出了一种利用熵和两级ICEEMDAN方法的去噪方法。随后,我们将包括长短期记忆(LSTM)、LSTM-BN、门控循环单元(GRU)和支持向量回归(SVR)在内的多种深度学习和机器学习方法应用于从分解中获得的固有模态函数(IMF),并将它们分类为无噪声的。之后,为每个IMF确定了最佳训练方法。最后,通过分层组合每个IMF的预测结果获得了所提出模型的预测。ICE2DE-MDL模型应用于八个股票市场指数和三个股票数据集,并预测了这些股票项目次日的收盘价。结果表明,股票指数和股票预测的均方根误差(RMSE)值在0.031至0.244之间,平均绝对误差(MAE)值在0.026至0.144之间,平均绝对百分比误差(MAPE)值在0.128至0.594之间,决定系数(R平方)值在0.905至0.998之间。此外,为了评估ICE2DE-MDL模型的性能,与股票预测范围内提出的各种混合模型进行了比较。经比较,ICE2DE-MDL模型在预测股票市场指数和个股方面相对于文献中的现有模型表现出卓越的性能。此外,据我们所知,本研究首次利用熵和ICEEMDAN的概念有效消除了股票项目数据中的噪声。这也是第二项将ICEEMDAN应用于金融时间序列预测问题的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec0/11232590/89a38f34ff1d/peerj-cs-10-2125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验