Suppr超能文献

基础与元学习:少样本分割的新视角

Base and Meta: A New Perspective on Few-Shot Segmentation.

作者信息

Lang Chunbo, Cheng Gong, Tu Binfei, Li Chao, Han Junwei

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Sep;45(9):10669-10686. doi: 10.1109/TPAMI.2023.3265865. Epub 2023 Aug 7.

Abstract

Despite the progress made by few-shot segmentation (FSS) in low-data regimes, the generalization capability of most previous works could be fragile when countering hard query samples with seen-class objects. This paper proposes a fresh and powerful scheme to tackle such an intractable bias problem, dubbed base and meta (BAM). Concretely, we apply an auxiliary branch (base learner) to the conventional FSS framework (meta learner) to explicitly identify base-class objects, i.e., the regions that do not need to be segmented. Then, the coarse results output by these two learners in parallel are adaptively integrated to derive accurate segmentation predictions. Considering the sensitivity of meta learner, we further introduce adjustment factors to estimate the scene differences between support and query image pairs from both style and appearance perspectives, so as to facilitate the model ensemble forecasting. The remarkable performance gains on standard benchmarks (PASCAL-5 , COCO-20 , and FSS-1000) manifest the effectiveness, and surprisingly, our versatile scheme sets new state-of-the-arts even with two plain learners. Furthermore, in light of its unique nature, we also discuss several more practical but challenging extensions, including generalized FSS, 3D point cloud FSS, class-agnostic FSS, cross-domain FSS, weak-label FSS, and zero-shot segmentation. Our source code is available at https://github.com/chunbolang/BAM.

摘要

尽管少样本分割(FSS)在低数据情况下取得了进展,但大多数先前工作在面对包含已见类别对象的困难查询样本时,其泛化能力可能较为脆弱。本文提出了一种全新且强大的方案来解决这一棘手的偏差问题,称为基础与元学习(BAM)。具体而言,我们在传统的FSS框架(元学习器)中应用一个辅助分支(基础学习器),以明确识别基础类别对象,即不需要分割的区域。然后,将这两个学习器并行输出的粗略结果进行自适应整合,以得出准确的分割预测。考虑到元学习器的敏感性,我们进一步引入调整因子,从风格和外观两个角度估计支持图像与查询图像对之间的场景差异,以便于模型集成预测。在标准基准测试(PASCAL-5 、COCO-20 和FSS-1000)上取得的显著性能提升证明了该方法的有效性,令人惊讶的是,即使使用两个简单的学习器,我们的通用方案也创造了新的最优成绩。此外,鉴于其独特性质,我们还讨论了几个更具实际意义但具有挑战性的扩展,包括广义FSS、3D点云FSS、类别无关FSS、跨域FSS、弱标签FSS和零样本分割。我们的源代码可在https://github.com/chunbolang/BAM获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验