Suppr超能文献

TCellR2Vec:用于癌症分类的TCR序列的高效特征选择

TCellR2Vec: efficient feature selection for TCR sequences for cancer classification.

作者信息

Tayebi Zahra, Ali Sarwan, Patterson Murray

机构信息

Computer Science, Georgia State University, Atlanta, GA, United States of America.

出版信息

PeerJ Comput Sci. 2024 Nov 4;10:e2239. doi: 10.7717/peerj-cs.2239. eCollection 2024.

Abstract

Cancer remains one of the leading causes of death globally. New immunotherapies that harness the patient's immune system to fight cancer show promise, but their development requires analyzing the diversity of immune cells called T-cells. T-cells have receptors that recognize and bind to cancer cells. Sequencing these T-cell receptors allows to provide insights into their immune response, but extracting useful information is challenging. In this study, we propose a new computational method, TCellR2Vec, to select key features from T-cell receptor sequences for classifying different cancer types. We extracted features like amino acid composition, charge, and diversity measures and combined them with other sequence embedding techniques. For our experiments, we used a dataset of over 50,000 T-cell receptor sequences from five cancer types, which showed that TCellR2Vec improved classification accuracy and efficiency over baseline methods. These results demonstrate TCellR2Vec's ability to capture informative aspects of complex T-cell receptor sequences. By improving computational analysis of the immune response, TCellR2Vec could aid the development of personalized immunotherapies tailored to each patient's T-cells. This has important implications for creating more effective cancer treatments based on the individual's immune system.

摘要

癌症仍然是全球主要死因之一。利用患者免疫系统对抗癌症的新型免疫疗法显示出了前景,但其研发需要分析被称为T细胞的免疫细胞的多样性。T细胞具有识别并结合癌细胞的受体。对这些T细胞受体进行测序能够深入了解其免疫反应,但提取有用信息具有挑战性。在本研究中,我们提出了一种新的计算方法TCellR2Vec,用于从T细胞受体序列中选择关键特征以对不同癌症类型进行分类。我们提取了氨基酸组成、电荷和多样性度量等特征,并将它们与其他序列嵌入技术相结合。在我们的实验中,我们使用了来自五种癌症类型的超过50,000个T细胞受体序列的数据集,结果表明TCellR2Vec相比于基线方法提高了分类准确率和效率。这些结果证明了TCellR2Vec捕捉复杂T细胞受体序列信息性方面的能力。通过改进免疫反应的计算分析,TCellR2Vec可以助力开发针对每个患者T细胞的个性化免疫疗法。这对于基于个体免疫系统创建更有效的癌症治疗方法具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/11622898/352df8ce74d9/peerj-cs-10-2239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验