Suppr超能文献

在加工中心(MCT)和计算机数控(CNC)机床中,使用一维卷积神经网络(1D CNN)基于深度学习的异常检测。

Deep learning-based anomaly detection using one-dimensional convolutional neural networks (1D CNN) in machine centers (MCT) and computer numerical control (CNC) machines.

作者信息

Athar Ali, Mozumder Md Ariful Islam, Ali Sikandar, Kim Hee-Cheol

机构信息

Digital Anti-aging Healthcare, Inje University, GIMHAE, Gyeongsangnam-do, Republic of South Korea.

James Cook University of North Queensland, Queensland, Australia.

出版信息

PeerJ Comput Sci. 2024 Oct 17;10:e2389. doi: 10.7717/peerj-cs.2389. eCollection 2024.

Abstract

Computer numerical control (CNC) and machine center (MCT) machines are mechanical devices that manipulate different tools using computer programming as inputs. Predicting failures in CNC and MCT machines before their actual failure time is crucial to reduce maintenance costs and increase productivity. This study is centered around a novel deep learning-based model using a 1D convolutional neural network (CNN) for early fault detection in MCT machines. We collected sensor-based data from CNC/MCT machines and applied various preprocessing techniques to prepare the dataset. Our experimental results demonstrate that the 1D-CNN model achieves a higher accuracy of 91.57% compared to traditional machine learning classifiers and other deep learning models, including Random Forest (RF) at 89.71%, multi-layer perceptron (MLP) at 87.45%, XGBoost at 89.67%, logistic regression (LR) at 75.93%, support vector machine (SVM) at 75.96%, K-nearest neighbors (KNN) at 82.93%, decision tree at 88.36%, naïve Bayes at 68.31%, long short-term memory (LSTM) at 90.80%, and a hybrid 1D CNN + LSTM model at 88.51%. Moreover, our proposed 1D CNN model outperformed all other mentioned models in precision, recall, and F-1 scores, with 91.87%, 91.57%, and 91.63%, respectively. These findings highlight the efficacy of the 1D CNN model in providing optimal performance with an MCT machine's dataset, making it particularly suitable for small manufacturing companies seeking to automate early fault detection and classification in CNC and MCT machines. This approach enhances productivity and aids in proactive maintenance and safety measures, demonstrating its potential to revolutionize the manufacturing industry.

摘要

计算机数控(CNC)机床和加工中心(MCT)机床是通过将计算机编程作为输入来操控不同工具的机械设备。在CNC机床和MCT机床实际出现故障之前预测故障,对于降低维护成本和提高生产率至关重要。本研究围绕一种基于深度学习的新型模型展开,该模型使用一维卷积神经网络(CNN)对MCT机床进行早期故障检测。我们从CNC/MCT机床收集了基于传感器的数据,并应用各种预处理技术来准备数据集。我们的实验结果表明,与传统机器学习分类器和其他深度学习模型相比,一维CNN模型实现了更高的准确率,达到91.57%,而随机森林(RF)为89.71%,多层感知器(MLP)为87.45%,XGBoost为89.67%,逻辑回归(LR)为75.93%,支持向量机(SVM)为75.96%,K近邻(KNN)为82.93%,决策树为88.36%,朴素贝叶斯为68.31%,长短期记忆网络(LSTM)为90.80%,以及混合的一维CNN + LSTM模型为88.51%。此外,我们提出的一维CNN模型在精确率、召回率和F1分数方面均优于所有其他提及的模型,分别为91.87%、91.57%和91.63%。这些发现凸显了一维CNN模型在处理MCT机床数据集时提供最佳性能的有效性,使其特别适合寻求对CNC机床和MCT机床的早期故障检测和分类进行自动化的小型制造公司。这种方法提高了生产率,并有助于主动维护和安全措施,证明了其变革制造业的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/defc/11623112/ce3233921b0e/peerj-cs-10-2389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验