Suppr超能文献

贝叶斯优化多模态深度混合学习方法在番茄叶部病害分类中的应用。

Bayesian optimized multimodal deep hybrid learning approach for tomato leaf disease classification.

机构信息

Department of Agricultural Construction and Environmental Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.

Langmuir Center of Colloids and Interfaces, Columbia University in the City of New York, New York, USA.

出版信息

Sci Rep. 2024 Sep 14;14(1):21525. doi: 10.1038/s41598-024-72237-x.

Abstract

Manual identification of tomato leaf diseases is a time-consuming and laborious process that may lead to inaccurate results without professional assistance. Therefore, an automated, early, and precise leaf disease recognition system is essential for farmers to ensure the quality and quantity of tomato production by providing timely interventions to mitigate disease spread. In this study, we have proposed seven robust Bayesian optimized deep hybrid learning models leveraging the synergy between deep learning and machine learning for the automated classification of ten types of tomato leaves (nine diseased and one healthy). We customized the popular Convolutional Neural Network (CNN) algorithm for automatic feature extraction due to its ability to capture spatial hierarchies of features directly from raw data and classical machine learning techniques [Random Forest (RF), XGBoost, GaussianNB (GNB), Support Vector Machines (SVM), Multinomial Logistic Regression (MLR), K-Nearest Neighbor (KNN)], and stacking for classifications. Additionally, the study incorported a Boruta feature filtering layer to capture the statistically significant features. The standard, research-oriented PlantVillage dataset was used for the performance testing, which facilitates benchmarking against prior research and enables meaningful comparisons of classification performance across different approaches. We utilized a variety of statistical classification metrics to demonstrate the robustness of our models. Using the CNN-Stacking model, this study achieved the highest classification performance among the seven hybrid models. On an unseen dataset, this model achieved average precision, recall, f1-score, mcc, and accuracy values of 98.527%, 98.533%, 98.527%, 98.525%, and 98.268%, respectively. Our study requires only 0.174 s of testing time to correctly identify noisy, blurry, and transformed images. This indicates our approach's time efficiency and generalizability in images captured under challenging lighting conditions and with complex backgrounds. Based on the comparative analysis, our approach is superior and computationally inexpensive compared to the existing studies. This work will aid in developing a smartphone app to offer farmers a real-time disease diagnosis tool and management strategies.

摘要

人工识别番茄叶片病害是一项费时费力的工作,如果没有专业人员的协助,可能会导致结果不准确。因此,对于农民来说,建立一个自动化、早期和精确的叶片病害识别系统至关重要,这可以确保番茄的产量和质量,通过及时干预来减轻病害的传播。在本研究中,我们提出了七个强大的贝叶斯优化深度混合学习模型,利用深度学习和机器学习的协同作用,对十种番茄叶片(九种病害和一种健康)进行自动分类。我们针对自动特征提取定制了流行的卷积神经网络(CNN)算法,因为它能够直接从原始数据中捕获特征的空间层次结构,并且可以与经典的机器学习技术[随机森林(RF)、极端梯度提升(XGBoost)、高斯朴素贝叶斯(GNB)、支持向量机(SVM)、多项式逻辑回归(MLR)、K 近邻(KNN)]和堆叠进行分类。此外,该研究还整合了 Boruta 特征过滤层,以捕获具有统计学意义的特征。我们使用标准的面向研究的 PlantVillage 数据集进行性能测试,这有助于与之前的研究进行基准测试,并能够在不同方法之间进行有意义的分类性能比较。我们使用各种统计分类指标来证明我们模型的稳健性。使用 CNN-Stacking 模型,本研究在七种混合模型中实现了最高的分类性能。在一个看不见的数据集上,该模型在平均精度、召回率、f1 分数、MCC 和准确性方面的得分分别为 98.527%、98.533%、98.527%、98.525%和 98.268%。我们的研究只需要 0.174 秒的测试时间就可以正确识别有噪声、模糊和变形的图像。这表明我们的方法在具有挑战性的光照条件和复杂背景下拍摄的图像中具有高效性和通用性。基于比较分析,我们的方法优于现有的研究,并且计算成本低廉。这项工作将有助于开发一个智能手机应用程序,为农民提供实时疾病诊断工具和管理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/642e/11401875/7a7181e526bf/41598_2024_72237_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验