Suppr超能文献

利用深度学习模型集成和Transformer融合增强脑肿瘤MRI分类

Enhancing brain tumor MRI classification with an ensemble of deep learning models and transformer integration.

作者信息

Benzorgat Nawal, Xia Kewen, Benzorgat Mustapha Noure Eddine

机构信息

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin, China.

出版信息

PeerJ Comput Sci. 2024 Nov 27;10:e2425. doi: 10.7717/peerj-cs.2425. eCollection 2024.

Abstract

Brain tumors are widely recognized as the primary cause of cancer-related mortality globally, necessitating precise detection to enhance patient survival rates. The early identification of brain tumor is presented with significant challenges in the healthcare domain, necessitating the implementation of precise and efficient diagnostic methodologies. The manual identification and analysis of extensive MRI data are presented as a challenging and laborious task, compounded by the importance of early tumor detection in reducing mortality rates. Prompt initiation of treatment hinges upon identifying the specific tumor type in patients, emphasizing the urgency for a dependable deep learning methodology for precise diagnosis. In this research, a hybrid model is presented which integrates the strengths of both transfer learning and the transformer encoder mechanism. After the performance evaluation of the efficacy of six pre-existing deep learning model, both individually and in combination, it was determined that an ensemble of three pretrained models achieved the highest accuracy. This ensemble, comprising DenseNet201, GoogleNet (InceptionV3), and InceptionResNetV2, is selected as the feature extraction framework for the transformer encoder network. The transformer encoder module integrates a Shifted Window-based Self-Attention mechanism, sequential Self-Attention, with a multilayer perceptron layer (MLP). These experiments were conducted on three publicly available research datasets for evaluation purposes. The Cheng dataset, BT-large-2c, and BT-large-4c dataset, each designed for various classification tasks with differences in sample number, planes, and contrast. The model gives consistent results on all three datasets and reaches an accuracy of 99.34%, 99.16%, and 98.62%, respectively, which are improved compared to other techniques.

摘要

脑肿瘤被广泛认为是全球癌症相关死亡的主要原因,因此需要精确检测以提高患者生存率。脑肿瘤的早期识别在医疗领域面临重大挑战,需要实施精确且高效的诊断方法。手动识别和分析大量MRI数据是一项具有挑战性且费力的任务,而早期肿瘤检测对于降低死亡率至关重要,这使得情况更加复杂。及时开始治疗取决于确定患者的特定肿瘤类型,这凸显了采用可靠的深度学习方法进行精确诊断的紧迫性。在本研究中,提出了一种混合模型,该模型整合了迁移学习和变压器编码器机制的优势。在对六个现有深度学习模型的有效性进行单独和组合性能评估后,确定由三个预训练模型组成的集成模型实现了最高准确率。这个集成模型由DenseNet201、谷歌网络(InceptionV3)和InceptionResNetV2组成,被选为变压器编码器网络的特征提取框架。变压器编码器模块集成了基于移位窗口的自注意力机制、顺序自注意力以及多层感知器层(MLP)。为了评估目的,这些实验在三个公开可用的研究数据集上进行。程数据集、BT-large-2c和BT-large-4c数据集,每个数据集都针对不同的分类任务进行设计,在样本数量、平面和对比度方面存在差异。该模型在所有三个数据集上都给出了一致的结果,准确率分别达到99.34%、99.16%和98.62%,与其他技术相比有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f15/11623201/e72b181bdde0/peerj-cs-10-2425-g001.jpg

相似文献

1
Enhancing brain tumor MRI classification with an ensemble of deep learning models and transformer integration.
PeerJ Comput Sci. 2024 Nov 27;10:e2425. doi: 10.7717/peerj-cs.2425. eCollection 2024.
2
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.
J Adv Res. 2023 Jun;48:191-211. doi: 10.1016/j.jare.2022.08.021. Epub 2022 Sep 7.
3
Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.
Comput Biol Med. 2025 Mar;186:109703. doi: 10.1016/j.compbiomed.2025.109703. Epub 2025 Jan 24.
4
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
5
HViT: Hybrid vision inspired transformer for the assessment of carotid artery plaque by addressing the cross-modality domain adaptation problem in MRI.
Comput Med Imaging Graph. 2023 Oct;109:102295. doi: 10.1016/j.compmedimag.2023.102295. Epub 2023 Sep 9.
6
Enhancing Skin Cancer Diagnosis Using Swin Transformer with Hybrid Shifted Window-Based Multi-head Self-attention and SwiGLU-Based MLP.
J Imaging Inform Med. 2024 Dec;37(6):3174-3192. doi: 10.1007/s10278-024-01140-8. Epub 2024 Jun 5.
8
ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation.
Comput Biol Med. 2024 Mar;171:108005. doi: 10.1016/j.compbiomed.2024.108005. Epub 2024 Jan 23.
9
MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.
BMC Med Inform Decis Mak. 2023 Jan 23;23(1):16. doi: 10.1186/s12911-023-02114-6.
10
Conv-Swinformer: Integration of CNN and shift window attention for Alzheimer's disease classification.
Comput Biol Med. 2023 Sep;164:107304. doi: 10.1016/j.compbiomed.2023.107304. Epub 2023 Jul 31.

本文引用的文献

1
Transformers in medical imaging: A survey.
Med Image Anal. 2023 Aug;88:102802. doi: 10.1016/j.media.2023.102802. Epub 2023 Apr 5.
2
Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling.
Curr Oncol. 2022 Oct 7;29(10):7498-7511. doi: 10.3390/curroncol29100590.
3
An Effective Skin Cancer Classification Mechanism via Medical Vision Transformer.
Sensors (Basel). 2022 May 25;22(11):4008. doi: 10.3390/s22114008.
4
A Novel and Effective Brain Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers.
Comput Intell Neurosci. 2022 Mar 26;2022:7897669. doi: 10.1155/2022/7897669. eCollection 2022.
5
A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN and Bayesian Optimization.
Healthcare (Basel). 2022 Mar 8;10(3):494. doi: 10.3390/healthcare10030494.
6
Personal Motivations and Systemic Incentives: Scientists on Questionable Research Practices.
Sci Eng Ethics. 2020 Jun;26(3):1531-1547. doi: 10.1007/s11948-020-00182-9. Epub 2020 Jan 24.
7
An enhanced deep learning approach for brain cancer MRI images classification using residual networks.
Artif Intell Med. 2020 Jan;102:101779. doi: 10.1016/j.artmed.2019.101779. Epub 2019 Dec 10.
8
Brain tumor classification for MR images using transfer learning and fine-tuning.
Comput Med Imaging Graph. 2019 Jul;75:34-46. doi: 10.1016/j.compmedimag.2019.05.001. Epub 2019 May 18.
9
Squeeze-and-Excitation Networks.
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验