Hossain Md Mamun, Hossain Md Moazzem, Arefin Most Binoee, Akhtar Fahima, Blake John
Department of Computer Science and Engineering, Bangladesh Army University of Science and Technology, Saidpur 5310, Bangladesh.
School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu 965-8580, Japan.
Diagnostics (Basel). 2023 Dec 30;14(1):89. doi: 10.3390/diagnostics14010089.
Skin cancer poses a significant healthcare challenge, requiring precise and prompt diagnosis for effective treatment. While recent advances in deep learning have dramatically improved medical image analysis, including skin cancer classification, ensemble methods offer a pathway for further enhancing diagnostic accuracy. This study introduces a cutting-edge approach employing the Max Voting Ensemble Technique for robust skin cancer classification on ISIC 2018: Task 1-2 dataset. We incorporate a range of cutting-edge, pre-trained deep neural networks, including MobileNetV2, AlexNet, VGG16, ResNet50, DenseNet201, DenseNet121, InceptionV3, ResNet50V2, InceptionResNetV2, and Xception. These models have been extensively trained on skin cancer datasets, achieving individual accuracies ranging from 77.20% to 91.90%. Our method leverages the synergistic capabilities of these models by combining their complementary features to elevate classification performance further. In our approach, input images undergo preprocessing for model compatibility. The ensemble integrates the pre-trained models with their architectures and weights preserved. For each skin lesion image under examination, every model produces a prediction. These are subsequently aggregated using the max voting ensemble technique to yield the final classification, with the majority-voted class serving as the conclusive prediction. Through comprehensive testing on a diverse dataset, our ensemble outperformed individual models, attaining an accuracy of 93.18% and an AUC score of 0.9320, thus demonstrating superior diagnostic reliability and accuracy. We evaluated the effectiveness of our proposed method on the HAM10000 dataset to ensure its generalizability. Our ensemble method delivers a robust, reliable, and effective tool for the classification of skin cancer. By utilizing the power of advanced deep neural networks, we aim to assist healthcare professionals in achieving timely and accurate diagnoses, ultimately reducing mortality rates and enhancing patient outcomes.
皮肤癌给医疗保健带来了重大挑战,需要进行精确且及时的诊断以实现有效治疗。虽然深度学习的最新进展显著改善了医学图像分析,包括皮肤癌分类,但集成方法为进一步提高诊断准确性提供了一条途径。本研究引入了一种前沿方法,即采用最大投票集成技术对ISIC 2018:任务1 - 2数据集进行稳健的皮肤癌分类。我们纳入了一系列前沿的预训练深度神经网络,包括MobileNetV2、AlexNet、VGG16、ResNet50、DenseNet201、DenseNet121、InceptionV3、ResNet50V2、InceptionResNetV2和Xception。这些模型已在皮肤癌数据集上进行了广泛训练,单个模型的准确率在77.20%至91.90%之间。我们的方法通过组合这些模型的互补特征来利用它们的协同能力,以进一步提升分类性能。在我们的方法中,输入图像会进行预处理以与模型兼容。该集成将预训练模型及其架构和权重保留下来。对于每个待检查的皮肤病变图像,每个模型都会产生一个预测。随后使用最大投票集成技术对这些预测进行汇总,以得出最终分类,多数投票的类别即为最终预测。通过在多样数据集上的全面测试,我们的集成模型优于单个模型,准确率达到93.18%,AUC分数为0.9320,从而证明了其卓越的诊断可靠性和准确性。我们在HAM10000数据集上评估了我们提出的方法的有效性,以确保其通用性。我们的集成方法为皮肤癌分类提供了一个强大、可靠且有效的工具。通过利用先进深度神经网络的力量,我们旨在帮助医疗保健专业人员实现及时准确的诊断,最终降低死亡率并改善患者预后。