文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于从胸部 X 光图像中识别肺炎的混合可解释集成式变压器编码器。

A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.

机构信息

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

出版信息

J Adv Res. 2023 Jun;48:191-211. doi: 10.1016/j.jare.2022.08.021. Epub 2022 Sep 7.


DOI:10.1016/j.jare.2022.08.021
PMID:36084812
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10248870/
Abstract

INTRODUCTION: Pneumonia is a microorganism infection that causes chronic inflammation of the human lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature extraction approach is required for promising identification performance. OBJECTIVES: A new hybrid explainable deep learning framework is proposed for accurate pneumonia disease identification using chest X-ray images. METHODS: The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convolutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e., DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with multilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training process of the proposed deep learning models over all scenarios is performed for binary and multi-class classification scenarios. RESULTS: The proposed hybrid deep learning model recorded 99.21% classification performance in terms of overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and 97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy and F1-score. For the ensemble multiclass identification scenario, ensemble A recorded 97.2% accuracy and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score. CONCLUSION: The proposed hybrid deep learning framework could provide promising and encouraging explainable identification performance comparing with the individual, ensemble models, or even the latest AI models in the literature. The code is available here: https://github.com/chiagoziemchima/Pneumonia_Identificaton.

摘要

简介:肺炎是一种微生物感染,会导致人体肺部细胞慢性炎症。胸部 X 光成像 是最常用于早期检测肺炎的筛查方法。虽然胸部 X 光图像通常比较模糊且光照较低,但需要一种强大的特征提取方法才能实现有前景的识别性能。

目的:提出了一种新的混合可解释深度学习框架,用于使用胸部 X 光图像准确识别肺炎疾病。

方法:所提出的混合工作流程是通过融合集成卷积网络和变压器编码器机制的功能来开发的。在两种不同情况下,使用集成学习骨干从原始输入 X 光图像中提取强特征:集成 A(即 DenseNet201、VGG16 和 GoogleNet)和集成 B(即 DenseNet201、InceptionResNetV2 和 Xception)。而变压器编码器则是基于自注意力机制和多层感知机(MLP)构建的,用于准确识别疾病。导出可视解释性显着性图,以强调输入 X 光图像上的关键预测区域。对所有场景进行端到端训练过程,以进行二进制和多类分类场景。

结果:在二进制分类任务中,所提出的混合深度学习模型的整体准确率和 F1 得分为 99.21%,在多类分类任务中准确率和 F1 得分为 98.19%和 97.29%。对于集成二进制识别场景,集成 A 记录的准确率和 F1 得分分别为 97.22%和 97.14%,而集成 B 则分别为 96.44%和 96.44%。对于集成多类识别场景,集成 A 记录的准确率和 F1 得分分别为 97.2%和 95.8%,而集成 B 记录的准确率和 F1 得分分别为 96.4%和 94.9%。

结论:与个体、集成模型甚至文献中的最新 AI 模型相比,所提出的混合深度学习框架可以提供有前景和令人鼓舞的可解释识别性能。代码可在此处获得:https://github.com/chiagoziemchima/Pneumonia_Identificaton。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/ad9a25977a6c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/c84f7e3dc0dc/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/92a25e77b60d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/1a93b6427b7d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/17a43752af75/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/fe27ebc19142/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/5ff6d2dd87de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/e1702fe1be9c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/e910115fa5d0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/05e83d46ec8c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/59f55845d235/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/ad9a25977a6c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/c84f7e3dc0dc/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/92a25e77b60d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/1a93b6427b7d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/17a43752af75/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/fe27ebc19142/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/5ff6d2dd87de/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/e1702fe1be9c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/e910115fa5d0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/05e83d46ec8c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/59f55845d235/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10248870/ad9a25977a6c/gr10.jpg

相似文献

[1]
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.

J Adv Res. 2023-6

[2]
ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images.

Diagnostics (Basel). 2022-12-28

[3]
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.

PLoS One. 2021

[4]
A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms.

Biomedicines. 2022-11-18

[5]
Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[6]
Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images.

Br J Radiol. 2021-5-1

[7]
Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images.

J King Saud Univ Comput Inf Sci. 2023-7

[8]
Covid-MANet: Multi-task attention network for explainable diagnosis and severity assessment of COVID-19 from CXR images.

Pattern Recognit. 2022-11

[9]
A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.

Curr Med Imaging. 2023

[10]
Study on transfer learning capabilities for pneumonia classification in chest-x-rays images.

Comput Methods Programs Biomed. 2022-6

引用本文的文献

[1]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[2]
Binary Classification of Pneumonia in Chest X-Ray Images Using Modified Contrast-Limited Adaptive Histogram Equalization Algorithm.

Sensors (Basel). 2025-6-26

[3]
A hybrid explainable federated-based vision transformer framework for breast cancer prediction via risk factors.

Sci Rep. 2025-5-27

[4]
A hybrid segmentation and classification CAD framework for automated myocardial infarction prediction from MRI images.

Sci Rep. 2025-4-23

[5]
Automated classification of chest X-rays: a deep learning approach with attention mechanisms.

BMC Med Imaging. 2025-3-4

[6]
ZooCNN: A Zero-Order Optimized Convolutional Neural Network for Pneumonia Classification Using Chest Radiographs.

J Imaging. 2025-1-13

[7]
From Binary to Multi-Class Classification: A Two-Step Hybrid CNN-ViT Model for Chest Disease Classification Based on X-Ray Images.

Diagnostics (Basel). 2024-12-6

[8]
Harnessing the power of machine learning into tissue engineering: current progress and future prospects.

Burns Trauma. 2024-12-6

[9]
Hybrid Deep Learning Framework for Melanoma Diagnosis Using Dermoscopic Medical Images.

Diagnostics (Basel). 2024-10-8

[10]
Data-driven classification and explainable-AI in the field of lung imaging.

Front Big Data. 2024-9-19

本文引用的文献

[1]
Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal.

Biosensors (Basel). 2022-6-17

[2]
Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection.

J Integr Neurosci. 2022-1-28

[3]
UBNet: Deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients.

J Xray Sci Technol. 2022

[4]
Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification.

Med Image Anal. 2022-1

[5]
"Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images".

Appl Intell (Dordr). 2021

[6]
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.

PLoS One. 2021

[7]
A comparative study of multiple neural network for detection of COVID-19 on chest X-ray.

EURASIP J Adv Signal Process. 2021

[8]
Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19.

J Med Syst. 2021-6-8

[9]
AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays.

PeerJ Comput Sci. 2021-4-20

[10]
Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19.

Cognit Comput. 2021-1-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索