Suppr超能文献

基于18F-FDG PET/CT影像学特征预测非小细胞肺癌中表皮生长因子受体(EGFR)突变状态及其亚型

Prediction of EGFR mutation status and its subtypes in non-small cell lung cancer based on 18 F-FDG PET/CT radiological features.

作者信息

Fan Yishuo, Liu Yuang, Ouyang Xiaohui, Su Jiagui, Zhou Xiaohong, Jia Qichen, Chen Wenjing, Chen Wen, Liu Xiaofei

机构信息

Department of Graduate School, Graduate School of Hebei North University, Zhangjiakou, Hebei, .

Department of Nuclear Medicine, The Eighth Medical Center of PLA General Hospital, .

出版信息

Nucl Med Commun. 2025 Apr 1;46(4):326-336. doi: 10.1097/MNM.0000000000001948. Epub 2025 Jan 20.

Abstract

PURPOSE

Prediction of epidermal growth factor receptor (EGFR) mutation status and subtypes in patients with non-small cell lung cancer (NSCLC) based on 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/computed tomography (CT) radiomics features.

PATIENTS AND METHODS

Retrospective analysis of 201 NSCLC patients with 18 F-FDG PET/CT and EGFR genetic testing was carried out. Radiomics features and clinical factors were used to construct a combined model for identifying EGFR mutation status. Mutation/wild-type models were trained in a training cohort ( n  = 129) and validated in an internal validation cohort ( n  = 41) vs an external validation cohort ( n  = 50). A second model predicting the 19/21 mutation locus was also built and evaluated in a subset of EGFR mutations (training cohort, n  = 55; validation cohort, n  = 14). The predictive performance and net clinical benefit of the models were assessed by analysis of the area under curve (AUC) of the subjects, nomogram, calibration curve and decision curve.

RESULTS

The AUC of the combined model distinguishing EGFR mutation status was 0.864 in the training cohort and 0.806 and 0.791 in the internal vs external test sets respectively, and the AUC of the 19/21 mutation site model was 0.971 and 0.867 in the training cohort and internal validation cohort respectively. The calibration curves of the individual models showed better model predictions (Brier score <0.25). Decision curve analysis showed that the models had clinical application.

CONCLUSION

The combined model based on 18 F-FDG PET/CT radiomics features combined and clinical features can predict EGFR mutation status and subtypes in NSCLC patients, and guiding targeted therapy, and facilitate precision medicine development.

摘要

目的

基于18F-氟脱氧葡萄糖(18F-FDG)PET/计算机断层扫描(CT)影像组学特征预测非小细胞肺癌(NSCLC)患者的表皮生长因子受体(EGFR)突变状态及亚型。

患者与方法

对201例接受18F-FDG PET/CT检查及EGFR基因检测的NSCLC患者进行回顾性分析。利用影像组学特征和临床因素构建用于识别EGFR突变状态的联合模型。突变/野生型模型在训练队列(n = 129)中进行训练,并在内部验证队列(n = 41)和外部验证队列(n = 50)中进行验证。还构建了一个预测19/21突变位点的第二个模型,并在EGFR突变亚组中进行评估(训练队列,n = 55;验证队列,n = 14)。通过分析受试者曲线下面积(AUC)、列线图、校准曲线和决策曲线来评估模型的预测性能和净临床效益。

结果

区分EGFR突变状态的联合模型在训练队列中的AUC为0.864,在内部测试集和外部测试集中分别为0.806和0.791,19/21突变位点模型在训练队列和内部验证队列中的AUC分别为0.971和0.867。各个模型的校准曲线显示出较好的模型预测效果(Brier评分<0.25)。决策曲线分析表明这些模型具有临床应用价值。

结论

基于18F-FDG PET/CT影像组学特征与临床特征的联合模型能够预测NSCLC患者的EGFR突变状态及亚型,指导靶向治疗,推动精准医学发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验