Ma Jing, Sun Xu, Liu Bingjian
Faculty of Science and Engineering, University of Nottingham, Ningbo, People's Republic of China.
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, People's Republic of China.
Patient Prefer Adherence. 2024 Dec 3;18:2397-2413. doi: 10.2147/PPA.S485553. eCollection 2024.
This review aims to provide a comprehensive overview of sensor technologies employed in interventions to enhance patient adherence to inhalation therapy for chronic respiratory diseases, with a particular emphasis on human factors. Sensor-based interventions offer opportunities to improve adherence through monitoring and feedback; however, a deeper understanding of how these technologies interact with patients is essential.
We conducted a systematic review by searching online databases, including PubMed, Scopus, Web of Science, Science Direct, and ACM Digital Library, spanning the timeframe from January 2014 to December 2023. Our inclusion criteria focused on studies that employed sensor-based technologies to enhance patient adherence to inhalation therapy.
The initial search yielded 1563 results. After a thorough screening process, we selected 37 relevant studies. These sensor-based interventions were organized within a comprehensive HFE framework, including data collection, data processing, system feedback, and system feasibility. The data collection phase comprised person-related, task-related, and physical environment-related data. Various approaches to data processing were employed, encompassing applications for assessing intervention effectiveness, monitoring patient behaviour, and identifying disease risks, while system feedback included reminders and alerts, data visualization, and persuasive features. System feasibility was evaluated based on patient acceptance, usability, and device cost considerations.
Sensor-based interventions hold significant promise for improving adherence to inhalation therapy. This review highlights the necessity of an integrated "person-task-physical environment" system to advance future sensor technologies. By capturing comprehensive data on patient health, device usage patterns, and environmental conditions, this approach enables more personalized and effective adherence support. Key recommendations include standardizing data integration protocols, employing advanced algorithms for insights generation, enhancing interactive visual features for accessibility, integrating persuasive design elements to boost engagement, exploring the advantages of conversational agents, and optimizing experience to increase patient acceptance.
本综述旨在全面概述用于干预措施中的传感器技术,这些干预措施旨在提高慢性呼吸道疾病患者对吸入治疗的依从性,尤其着重于人为因素。基于传感器的干预措施通过监测和反馈提供了改善依从性的机会;然而,深入了解这些技术如何与患者相互作用至关重要。
我们通过检索在线数据库进行了一项系统综述,这些数据库包括PubMed、Scopus、科学网、Science Direct和ACM数字图书馆,时间跨度为2014年1月至2023年12月。我们的纳入标准侧重于采用基于传感器技术来提高患者对吸入治疗依从性的研究。
初步检索产生了1563条结果。经过全面筛选过程,我们选择了37项相关研究。这些基于传感器的干预措施被组织在一个全面的人因工程学(HFE)框架内,包括数据收集、数据处理、系统反馈和系统可行性。数据收集阶段包括与人员相关、与任务相关以及与物理环境相关的数据。采用了各种数据处理方法,包括用于评估干预效果、监测患者行为和识别疾病风险的应用程序,而系统反馈包括提醒和警报、数据可视化以及说服性特征。基于患者接受度、可用性和设备成本考量对系统可行性进行了评估。
基于传感器的干预措施在改善对吸入治疗的依从性方面具有巨大潜力。本综述强调了一个集成的“人员 - 任务 - 物理环境”系统对于推动未来传感器技术发展的必要性。通过获取关于患者健康、设备使用模式和环境条件的全面数据,这种方法能够提供更个性化且有效的依从性支持。关键建议包括标准化数据集成协议、采用先进算法以生成见解、增强交互式视觉特征以提高可及性、整合说服性设计元素以促进参与度、探索对话代理的优势以及优化体验以提高患者接受度。