Suppr超能文献

确定局部连接模式对兴奋性-抑制性神经网络动力学的影响。

Identifying the impact of local connectivity patterns on dynamics in excitatory-inhibitory networks.

作者信息

Shao Yuxiu, Dahmen David, Recanatesi Stefano, Shea-Brown Eric, Ostojic Srdjan

出版信息

ArXiv. 2025 Mar 15:arXiv:2411.06802v3.

Abstract

Networks of excitatory and inhibitory (EI) neurons form a canonical circuit in the brain. Seminal theoretical results on dynamics of such networks are based on the assumption that synaptic strengths depend on the type of neurons they connect, but are otherwise statistically independent. Recent synaptic physiology datasets however highlight the prominence of specific connectivity patterns that go well beyond what is expected from independent connections. While decades of influential research have demonstrated the strong role of the basic EI cell type structure, to which extent additional connectivity features influence dynamics remains to be fully determined. Here we examine the effects of pairwise connectivity motifs on the linear dynamics in EI networks using an analytical framework that approximates the connectivity in terms of low-rank structures. This low-rank approximation is based on a mathematical derivation of the dominant eigenvalues of the connectivity matrix and predicts the impact on responses to external inputs of connectivity motifs and their interactions with cell-type structure. Our results reveal that a particular pattern of connectivity, chain motifs, have a much stronger impact on dominant eigenmodes than other pairwise motifs. An overrepresentation of chain motifs induces a strong positive eigenvalue in inhibition-dominated networks and generates a potential instability that requires revisiting the classical excitation-inhibition balance criteria. Examining effects of external inputs, we show that chain motifs can on their own induce paradoxical responses where an increased input to inhibitory neurons leads to a decrease in their activity due to the recurrent feedback. These findings have direct implications for the interpretation of experiments in which responses to optogenetic perturbations are measured and used to infer the dynamical regime of cortical circuits.

摘要

兴奋性和抑制性(EI)神经元网络在大脑中形成一种典型回路。关于此类网络动力学的开创性理论结果基于这样的假设:突触强度取决于它们所连接的神经元类型,但在其他方面是统计独立的。然而,最近的突触生理学数据集突出了特定连接模式的显著程度,这些模式远远超出了独立连接所预期的范围。虽然数十年的有影响力的研究已经证明了基本EI细胞类型结构的重要作用,但额外的连接特征在多大程度上影响动力学仍有待充分确定。在这里,我们使用一个分析框架来研究成对连接基序对EI网络线性动力学的影响,该框架根据低秩结构来近似连接性。这种低秩近似基于连接矩阵主导特征值的数学推导,并预测了连接基序及其与细胞类型结构的相互作用对外部输入响应的影响。我们的结果表明,一种特定的连接模式,即链式基序,对主导本征模的影响比其他成对基序要强得多。链式基序的过度存在在抑制主导的网络中诱导出一个强正特征值,并产生一种潜在的不稳定性,这需要重新审视经典的兴奋 - 抑制平衡标准。在研究外部输入的影响时,我们表明链式基序自身可以诱导出矛盾的反应,即由于循环反馈,抑制性神经元输入增加会导致其活动减少。这些发现对于解释测量对光遗传学扰动的反应并用于推断皮质回路动力学状态的实验具有直接意义。

相似文献

2
Contextual Integration in Cortical and Convolutional Neural Networks.皮层神经网络和卷积神经网络中的上下文整合
Front Comput Neurosci. 2020 Apr 23;14:31. doi: 10.3389/fncom.2020.00031. eCollection 2020.

本文引用的文献

3
Geometry of population activity in spiking networks with low-rank structure.具有低秩结构的尖峰网络中群体活动的几何结构。
PLoS Comput Biol. 2023 Aug 7;19(8):e1011315. doi: 10.1371/journal.pcbi.1011315. eCollection 2023 Aug.
4
The connectome of an insect brain.昆虫大脑的连接组图谱。
Science. 2023 Mar 10;379(6636):eadd9330. doi: 10.1126/science.add9330.
6
The impact of sparsity in low-rank recurrent neural networks.低秩递归神经网络中稀疏性的影响。
PLoS Comput Biol. 2022 Aug 9;18(8):e1010426. doi: 10.1371/journal.pcbi.1010426. eCollection 2022 Aug.
8
The role of population structure in computations through neural dynamics.人口结构在神经动力学计算中的作用。
Nat Neurosci. 2022 Jun;25(6):783-794. doi: 10.1038/s41593-022-01088-4. Epub 2022 Jun 6.
10
Architectures of neuronal circuits.神经元回路的结构。
Science. 2021 Sep 3;373(6559):eabg7285. doi: 10.1126/science.abg7285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验