Department of Mathematics and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
PLoS Comput Biol. 2022 Jul 21;18(7):e1010327. doi: 10.1371/journal.pcbi.1010327. eCollection 2022 Jul.
A key question in theoretical neuroscience is the relation between the connectivity structure and the collective dynamics of a network of neurons. Here we study the connectivity-dynamics relation as reflected in the distribution of eigenvalues of the covariance matrix of the dynamic fluctuations of the neuronal activities, which is closely related to the network dynamics' Principal Component Analysis (PCA) and the associated effective dimensionality. We consider the spontaneous fluctuations around a steady state in a randomly connected recurrent network of stochastic neurons. An exact analytical expression for the covariance eigenvalue distribution in the large-network limit can be obtained using results from random matrices. The distribution has a finitely supported smooth bulk spectrum and exhibits an approximate power-law tail for coupling matrices near the critical edge. We generalize the results to include second-order connectivity motifs and discuss extensions to excitatory-inhibitory networks. The theoretical results are compared with those from finite-size networks and the effects of temporal and spatial sampling are studied. Preliminary application to whole-brain imaging data is presented. Using simple connectivity models, our work provides theoretical predictions for the covariance spectrum, a fundamental property of recurrent neuronal dynamics, that can be compared with experimental data.
理论神经科学中的一个关键问题是连接结构与神经元网络的集体动力学之间的关系。在这里,我们研究了协方差矩阵的动态波动的特征值分布所反映的连接动力学关系,这与网络动力学的主成分分析(PCA)和相关的有效维度密切相关。我们考虑了随机连接的随机神经元递归网络中稳定状态周围的自发波动。使用随机矩阵的结果,可以在大网络极限下获得协方差特征值分布的精确解析表达式。该分布在有界光滑体谱中有一个有限支撑,并且在接近临界边缘的耦合矩阵中表现出近似的幂律尾部。我们将结果推广到包括二阶连接模式,并讨论了对兴奋性抑制性网络的扩展。将理论结果与有限大小的网络进行了比较,并研究了时间和空间采样的影响。还对全脑成像数据进行了初步应用。使用简单的连接模型,我们的工作为协方差谱提供了理论预测,这是递归神经元动力学的基本性质,可以与实验数据进行比较。