Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, Paris, France.
Université de Bordeaux, CNRS, IMN, UMR, Bordeaux, France.
Nat Neurosci. 2022 Jun;25(6):783-794. doi: 10.1038/s41593-022-01088-4. Epub 2022 Jun 6.
Neural computations are currently investigated using two separate approaches: sorting neurons into functional subpopulations or examining the low-dimensional dynamics of collective activity. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from networks trained on neuroscience tasks, here we show that the dimensionality of the dynamics and subpopulation structure play fundamentally complementary roles. Although various tasks can be implemented by increasing the dimensionality in networks with fully random population structure, flexible input-output mappings instead require a non-random population structure that can be described in terms of multiple subpopulations. Our analyses revealed that such a subpopulation structure enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics. Our results lead to task-specific predictions for the structure of neural selectivity, for inactivation experiments and for the implication of different neurons in multi-tasking.
目前,神经计算是通过两种独立的方法来研究的:将神经元分类为功能亚群,或研究集体活动的低维动力学。目前尚不清楚这两个方面是否以及如何相互作用来塑造计算。通过一种从神经科学任务训练的网络中提取计算机制的新方法,我们在这里表明,动力学的维数和亚群结构起着根本互补的作用。尽管各种任务可以通过增加具有完全随机群体结构的网络的维数来实现,但灵活的输入-输出映射反而需要一种可以用多个亚群来描述的非随机群体结构。我们的分析表明,这种亚群结构可以通过基于增益控制调制的机制来实现灵活的计算,这种机制可以灵活地塑造集体动力学。我们的结果为神经选择性的结构、失活实验以及不同神经元在多任务处理中的作用提供了特定于任务的预测。