Suppr超能文献

人口结构在神经动力学计算中的作用。

The role of population structure in computations through neural dynamics.

机构信息

Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, Paris, France.

Université de Bordeaux, CNRS, IMN, UMR, Bordeaux, France.

出版信息

Nat Neurosci. 2022 Jun;25(6):783-794. doi: 10.1038/s41593-022-01088-4. Epub 2022 Jun 6.

Abstract

Neural computations are currently investigated using two separate approaches: sorting neurons into functional subpopulations or examining the low-dimensional dynamics of collective activity. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from networks trained on neuroscience tasks, here we show that the dimensionality of the dynamics and subpopulation structure play fundamentally complementary roles. Although various tasks can be implemented by increasing the dimensionality in networks with fully random population structure, flexible input-output mappings instead require a non-random population structure that can be described in terms of multiple subpopulations. Our analyses revealed that such a subpopulation structure enables flexible computations through a mechanism based on gain-controlled modulations that flexibly shape the collective dynamics. Our results lead to task-specific predictions for the structure of neural selectivity, for inactivation experiments and for the implication of different neurons in multi-tasking.

摘要

目前,神经计算是通过两种独立的方法来研究的:将神经元分类为功能亚群,或研究集体活动的低维动力学。目前尚不清楚这两个方面是否以及如何相互作用来塑造计算。通过一种从神经科学任务训练的网络中提取计算机制的新方法,我们在这里表明,动力学的维数和亚群结构起着根本互补的作用。尽管各种任务可以通过增加具有完全随机群体结构的网络的维数来实现,但灵活的输入-输出映射反而需要一种可以用多个亚群来描述的非随机群体结构。我们的分析表明,这种亚群结构可以通过基于增益控制调制的机制来实现灵活的计算,这种机制可以灵活地塑造集体动力学。我们的结果为神经选择性的结构、失活实验以及不同神经元在多任务处理中的作用提供了特定于任务的预测。

相似文献

1
The role of population structure in computations through neural dynamics.人口结构在神经动力学计算中的作用。
Nat Neurosci. 2022 Jun;25(6):783-794. doi: 10.1038/s41593-022-01088-4. Epub 2022 Jun 6.
4
Geometry of population activity in spiking networks with low-rank structure.具有低秩结构的尖峰网络中群体活动的几何结构。
PLoS Comput Biol. 2023 Aug 7;19(8):e1011315. doi: 10.1371/journal.pcbi.1011315. eCollection 2023 Aug.
5
Encoding time in neural dynamic regimes with distinct computational tradeoffs.用具有不同计算权衡的神经动力学状态来编码时间。
PLoS Comput Biol. 2022 Mar 3;18(3):e1009271. doi: 10.1371/journal.pcbi.1009271. eCollection 2022 Mar.

引用本文的文献

1
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
PLoS Comput Biol. 2025 Aug 18;21(8):e1013371. doi: 10.1371/journal.pcbi.1013371.
3
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
4
Stochastic activity in low-rank recurrent neural networks.低秩递归神经网络中的随机活动。
bioRxiv. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933.
8
Balanced state of networks of winner-take-all units.赢者通吃单元网络的平衡状态
PLoS Comput Biol. 2025 Jun 11;21(6):e1013081. doi: 10.1371/journal.pcbi.1013081. eCollection 2025 Jun.
9
The cortical critical power law balances energy and information in an optimal fashion.皮质临界功率定律以最优方式平衡能量和信息。
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2418218122. doi: 10.1073/pnas.2418218122. Epub 2025 May 23.

本文引用的文献

3
Two views on the cognitive brain.两种认知大脑观。
Nat Rev Neurosci. 2021 Jun;22(6):359-371. doi: 10.1038/s41583-021-00448-6. Epub 2021 Apr 15.
5
Artificial Neural Networks for Neuroscientists: A Primer.人工神经网络:神经科学家入门指南。
Neuron. 2020 Sep 23;107(6):1048-1070. doi: 10.1016/j.neuron.2020.09.005.
7
Computation Through Neural Population Dynamics.通过神经群体动力学进行计算。
Annu Rev Neurosci. 2020 Jul 8;43:249-275. doi: 10.1146/annurev-neuro-092619-094115.
8
Mechanisms underlying gain modulation in the cortex.皮层中增益调制的作用机制。
Nat Rev Neurosci. 2020 Feb;21(2):80-92. doi: 10.1038/s41583-019-0253-y. Epub 2020 Jan 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验