Retsa Chrysa, Ariza Ana Hernando, Noordanus Nathanael W, Ruffoni Lorenzo, Murray Micah M, Franceschiello Benedetta
The Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.
Curr Res Neurobiol. 2024 Nov 19;7:100140. doi: 10.1016/j.crneur.2024.100140. eCollection 2024.
Geometric optical illusions (GOIs) are mismatches between physical stimuli and perception. GOIs provide an access point to study the interplay between sensation and perception, Yet, there is relatively scant quantitative investigation of the extent to which different GOIs rely on similar or distinct perceptual mechanisms, which themselves are driven by specific physical properties. We addressed this knowledge gap with a combination of psychophysics and computational modelling. First, 30 healthy adults reported quantitatively their perceptual biases with three GOIs, whose physical properties parametrically varied on a trial-by-trial basis. A given physical property, when considered in isolation, had different effects on perceptual biases depending on the GOI (e.g. the spacing of stimuli affected one GOI, but not another). For a given GOI, there were oftentimes interactions between the effects of different physical properties. Next, we used these psychophysical results to tune a computational model of primary visual cortex that combines parameters of orientation selectivity, receptive-field size, intra-cortical connectivity, and long-range interactions. We showed that similar biases generated mirror those observed in human behavior when receptive field size, bandwidth and shape (rounded or elongated) are tuned, as well as parameters encoding the strength of the long-range intra-regional interactions between receptive fields. Collectively, our results suggest that different physical properties are not operating independently, but rather synergistically, to generate a GOI. Such results provide a roadmap whereby computational modelling, informed by human psychophysics, can reveal likely mechanistic underpinnings of perception.
几何光学错觉(GOIs)是物理刺激与感知之间的不匹配。GOIs为研究感觉与感知之间的相互作用提供了一个切入点。然而,对于不同的GOIs在多大程度上依赖于相似或不同的感知机制,相对缺乏定量研究,而这些感知机制本身是由特定的物理特性驱动的。我们通过结合心理物理学和计算建模来填补这一知识空白。首先,30名健康成年人用三种GOIs定量报告了他们的感知偏差,这些GOIs的物理特性在每次试验中参数化变化。当单独考虑某一物理特性时,根据GOI的不同,其对感知偏差有不同的影响(例如,刺激的间距对一种GOI有影响,但对另一种没有影响)。对于给定的GOI,不同物理特性的影响之间常常存在相互作用。接下来,我们利用这些心理物理学结果来调整初级视觉皮层的计算模型,该模型结合了方向选择性、感受野大小、皮层内连接性和长程相互作用的参数。我们表明,当感受野大小、带宽和形状(圆形或椭圆形)以及编码感受野之间长程区域内相互作用强度的参数被调整时,产生的类似偏差与人类行为中观察到的偏差相似。总体而言,我们的结果表明,不同的物理特性并非独立运作,而是协同作用以产生GOI。这些结果提供了一个路线图,据此以人类心理物理学为依据的计算建模可以揭示感知可能机制的基础。