Suppr超能文献

机器学习辅助的高熔点聚合物设计与筛选:数据库可视化与合成可行性评估

Machine Learning-Assisted Designing and Screening of Polymers with a High Melting Point: Database Visualization and Synthetic Feasibility Assessment.

作者信息

Dayo Zaheer Ahmed, Guosong Jiang, El-Tayeb Mohamed A, Shah Syed Shoaib Ahmad, Naeem Sumaira

机构信息

College of Computer Science, Huanggang Normal University, Huanggang 438000, China.

Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

出版信息

ACS Omega. 2024 Nov 21;9(48):47480-47488. doi: 10.1021/acsomega.4c05878. eCollection 2024 Dec 3.

Abstract

In this study, a novel approach leveraging machine learning (ML) techniques for the design and screening of polymers with high melting points is introduced. More than 40 ML models are trained for the prediction of the melting point. One best model is selected for further analysis. 10,000 polymers are generated using an automatic approach. The generated database of polymers is visualized and analyzed to find the hidden trends. Synthetic feasibility assessment is conducted to prioritize candidate polymers for future experimental work. Chemical similarity of chosen polymers is analyzed using cluster analysis and a heatmap. This research contributes to the advancement of polymer design methodologies, offering insights into the development of heat-resistant polymers for a wide range of industrial applications.

摘要

在本研究中,引入了一种利用机器学习(ML)技术设计和筛选高熔点聚合物的新方法。训练了40多个ML模型来预测熔点。选择一个最佳模型进行进一步分析。使用自动方法生成了10000种聚合物。对生成的聚合物数据库进行可视化和分析,以发现潜在趋势。进行合成可行性评估,为未来的实验工作确定候选聚合物的优先级。使用聚类分析和热图分析所选聚合物的化学相似性。本研究有助于推进聚合物设计方法,为开发适用于广泛工业应用的耐热聚合物提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b896/11618439/a38da5f3551a/ao4c05878_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验