Dayo Zaheer Ahmed, Guosong Jiang, El-Tayeb Mohamed A, Shah Syed Shoaib Ahmad, Naeem Sumaira
College of Computer Science, Huanggang Normal University, Huanggang 438000, China.
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
ACS Omega. 2024 Nov 21;9(48):47480-47488. doi: 10.1021/acsomega.4c05878. eCollection 2024 Dec 3.
In this study, a novel approach leveraging machine learning (ML) techniques for the design and screening of polymers with high melting points is introduced. More than 40 ML models are trained for the prediction of the melting point. One best model is selected for further analysis. 10,000 polymers are generated using an automatic approach. The generated database of polymers is visualized and analyzed to find the hidden trends. Synthetic feasibility assessment is conducted to prioritize candidate polymers for future experimental work. Chemical similarity of chosen polymers is analyzed using cluster analysis and a heatmap. This research contributes to the advancement of polymer design methodologies, offering insights into the development of heat-resistant polymers for a wide range of industrial applications.
在本研究中,引入了一种利用机器学习(ML)技术设计和筛选高熔点聚合物的新方法。训练了40多个ML模型来预测熔点。选择一个最佳模型进行进一步分析。使用自动方法生成了10000种聚合物。对生成的聚合物数据库进行可视化和分析,以发现潜在趋势。进行合成可行性评估,为未来的实验工作确定候选聚合物的优先级。使用聚类分析和热图分析所选聚合物的化学相似性。本研究有助于推进聚合物设计方法,为开发适用于广泛工业应用的耐热聚合物提供见解。