Suppr超能文献

使用机器学习模型估计和预测聚合物的物理特性

Estimation and Prediction of the Polymers' Physical Characteristics Using the Machine Learning Models.

作者信息

Malashin Ivan Pavlovich, Tynchenko Vadim Sergeevich, Nelyub Vladimir Aleksandrovich, Borodulin Aleksei Sergeevich, Gantimurov Andrei Pavlovich

机构信息

Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia.

Information-Control Systems Department, Institute of Computer Science and Telecommunications, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia.

出版信息

Polymers (Basel). 2023 Dec 29;16(1):115. doi: 10.3390/polym16010115.

Abstract

This article investigates the utility of machine learning (ML) methods for predicting and analyzing the diverse physical characteristics of polymers. Leveraging a rich dataset of polymers' characteristics, the study encompasses an extensive range of polymer properties, spanning compressive and tensile strength to thermal and electrical behaviors. Using various regression methods like Ensemble, Tree-based, Regularization, and Distance-based, the research undergoes thorough evaluation using the most common quality metrics. As a result of a series of experimental studies on the selection of effective model parameters, those that provide a high-quality solution to the stated problem were found. The best results were achieved by Random Forest with the highest R2 scores of 0.71, 0.73, and 0.88 for glass transition, thermal decomposition, and melting temperatures, respectively. The outcomes are intricately compared, providing valuable insights into the efficiency of distinct ML approaches in predicting polymer properties. Unknown values for each characteristic were predicted, and a method validation was performed by training on the predicted values, comparing the results with the specified variance values of each characteristic. The research not only advances our comprehension of polymer physics but also contributes to informed model selection and optimization for materials science applications.

摘要

本文研究了机器学习(ML)方法在预测和分析聚合物各种物理特性方面的效用。该研究利用丰富的聚合物特性数据集,涵盖了广泛的聚合物属性,从压缩强度和拉伸强度到热行为和电行为。使用诸如集成、基于树、正则化和基于距离等各种回归方法,该研究使用最常见的质量指标进行了全面评估。通过一系列关于有效模型参数选择的实验研究,找到了能够为所述问题提供高质量解决方案的参数。随机森林取得了最佳结果,对于玻璃化转变温度、热分解温度和熔点温度,其R2分数分别高达0.71、0.73和0.88。对结果进行了复杂的比较,为不同ML方法在预测聚合物特性方面的效率提供了有价值的见解。预测了每个特性的未知值,并通过对预测值进行训练、将结果与每个特性的指定方差值进行比较来进行方法验证。该研究不仅增进了我们对聚合物物理的理解,还为材料科学应用中的明智模型选择和优化做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f02c/10780762/4bd3a162ff66/polymers-16-00115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验