Perez Kenneth Lopez, Zhao Bill, Quintana Ramon Alain Miranda
bioRxiv. 2024 Nov 26:2024.11.24.625084. doi: 10.1101/2024.11.24.625084.
The average and variance of the molecular similarities in a set is high-value and useful information for cheminformatics tasks like chemical space exploration and subset selection. However, the calculation of the variance of the complete similarity matrix has a quadratic complexity, ( ). As the sizes of molecular libraries constantly increase, this pairwise approach is unfeasible. In this work, we present an alternative to obtaining the exact standard deviation of the molecular similarities in a set (with molecules and features) for the Russell-Rao (RR) and Sokal-Michener (SM) similarity indexes in ( ) complexity. Additionally, we present a highly accurate approximation with linear complexity, ( ), based on the sampling of representative molecules from the set. The proposed approximation can be extended to other similarity indexes, including the popular Jaccard-Tanimoto (JT). With only the sampling of 50 molecules, the proposed method can estimate the standard deviation of the similarities in a set with RMSE lower than 0.01 for sets of up to 50,000 molecules. In comparison, random sampling does not warrant a good approximation as shown in our results.
一组分子相似性的平均值和方差是化学信息学任务(如化学空间探索和子集选择)中的高价值且有用的信息。然而,完整相似性矩阵方差的计算具有二次复杂度( )。随着分子库规模不断增大,这种成对方法不可行。在这项工作中,我们提出了一种替代方法,对于( )复杂度下的Russell-Rao(RR)和Sokal-Michener(SM)相似性指数,可获得一组(有 个分子和 个特征)分子相似性的精确标准差。此外,我们基于从该组中对代表性分子进行采样,提出了一种具有线性复杂度( )的高精度近似方法。所提出的近似方法可扩展到其他相似性指数,包括流行的Jaccard-Tanimoto(JT)指数。对于多达50,000个分子的集合,仅通过对50个分子进行采样,所提出的方法就能以低于0.01的均方根误差(RMSE)估计该集合中相似性的标准差。相比之下,如我们的结果所示,随机采样无法保证良好的近似效果。