Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Development. 2024 Jan 15;151(2). doi: 10.1242/dev.202097. Epub 2024 Jan 18.
To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.
为了深入了解果蝇幼虫结构形成过程中激活的转录程序,我们在果蝇胚胎发生的两个时期进行了单细胞 RNA 测序:第 10-12 阶段,此时大多数器官首次被指定并开始形态和生理特化;第 13-16 阶段,此时器官达到最终的成熟结构并开始发挥功能。我们的数据证实了先前关于某些器官(唾液腺和气管)功能特化的发现,并澄清了另一个器官(浆血细胞)的胚胎功能。我们还在生殖细胞中鉴定出两个早期发育轨迹,并揭示了在生殖干细胞特化过程中蛋白质水解的潜在作用。我们确定了果蝇基质体的关键成分的可能细胞类型起源,以及几种常用的果蝇胚胎细胞培养系。最后,我们将我们的发现与其他最近的相关研究以及其他用于识别组织特异性基因表达模式的方法进行了比较。这些数据为鉴定组织特异性形态发生和发育器官功能特化中的许多新参与者提供了有用的社区资源。