Suppr超能文献

用于盐水中高效析氯和析氢反应的IrB纳米晶体的超快合成

Ultrafast Synthesis of IrB Nanocrystals for Efficient Chlorine and Hydrogen Evolution Reactions in Saline Water.

作者信息

Liu Tingting, Chen Zhangsen, Liu Sixiang, Wang Pan, Pu Zonghua, Zhang Gaixia, Sun Shuhui

机构信息

Institut National de la Recherche Scientifique (INRS), Centre Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1P7, Canada.

College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian, 350117, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202414021. doi: 10.1002/anie.202414021. Epub 2024 Dec 17.

Abstract

The production of storable hydrogen fuel through water electrolysis powered by renewable energy sources such as solar, marine, geothermal, and wind energy presents a promising pathway toward achieving energy sustainability. Nevertheless, state-of-the-art electrolysis requires support from ancillary processes which often incur financial and energy costs. Developing electrolysers capable of directly operating with water that contains impurities can circumvent these processes. Herein, we demonstrate the efficient and durable electrolysis of saline water to produce chlorine gas (Cl) and hydrogen using structurally ordered IrB, synthesized through ultrafast joule heating. IrB exhibits remarkable performance, achieving overpotentials of 75 mV for the chlorine evolution reaction (CER) and 12 mV for hydrogen evolution reactions (HER) at current densities of 10 mA cm. Moreover, IrB displays a durability of over 90 h towards both CER and HER. Density functional theory reveals that IrB has adsorption energies significantly closer to 0 eV for Cl and H, compared to IrO and Pt/C. Furthermore, in situ Raman investigations reveal that Ir in IrB serves as the active center for CER, while the introduction of B atoms to Ir lattices mitigates the formation of absorbed hydrogen species on the Ir surface, thereby enhancing the performance of IrB in HER.

摘要

通过太阳能、海洋能、地热能和风能等可再生能源驱动的水电解来生产可储存的氢燃料,为实现能源可持续性提供了一条有前景的途径。然而,目前最先进的电解需要辅助过程的支持,而这些过程往往会产生财务和能源成本。开发能够直接处理含杂质水的电解槽可以规避这些过程。在此,我们展示了使用通过超快焦耳加热合成的结构有序的IrB对盐水进行高效且持久的电解以生产氯气(Cl)和氢气。IrB表现出卓越的性能,在电流密度为10 mA cm时,析氯反应(CER)的过电位为75 mV,析氢反应(HER)的过电位为12 mV。此外,IrB对CER和HER均表现出超过90小时的耐久性。密度泛函理论表明,与IrO和Pt/C相比,IrB对Cl和H的吸附能明显更接近0 eV。此外,原位拉曼研究表明,IrB中的Ir是CER的活性中心,而向Ir晶格中引入B原子可减轻Ir表面吸附氢物种的形成,从而提高IrB在HER中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b9/11773112/3cbe968e77a0/ANIE-64-e202414021-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验