Suppr超能文献

集成智能预测算法与土地利用情景以测量长江三角洲的碳排放:基于长短期记忆的机器学习模型

Ensemble intelligence prediction algorithms and land use scenarios to measure carbon emissions of the Yangtze River Delta: A machine learning model based on Long Short-Term Memory.

作者信息

Dai Qi, Liu Xiao-Yan, Sun Fang-Yi, Ren Fang-Rong

机构信息

College of Public Administration, Hohai University, Nanjing, P.R. China.

College of Economics and Management, Nanjing Forestry University, Nanjing, P.R. China.

出版信息

PLoS One. 2024 Dec 9;19(12):e0311441. doi: 10.1371/journal.pone.0311441. eCollection 2024.

Abstract

Land use in urban agglomerations is the main source of carbon emissions, and reducing them and improving land use efficiency are the keys to achieving sustainable development goals (SDGs). To advance the literature on densely populated cities and highly commercialized regions, this research evaluates the total-factor carbon emission efficiency index (TCEI) of 27 cities in China's Yangtze River Delta (YRD) urban agglomeration at different stages from 2011 to 2020 using two-stage dynamic data envelopment analysis (DEA). The study carries out regression analysis and a long-short-term memory model (LSTM) to respectively filter out the factors and predict TCEI. The results indicate the following. (1) The total efficiency of 27 cities has significantly improved from 2011 to 2020, and there are obvious spatial heterogeneity characteristics. (2) In terms of stages, most cities' efficiency values in the initial stage (energy consumption) exceed those in the second stage (sustainable land utilization). (3) In terms of influencing factors, urban green space's ability to capture carbon has a notably positive correlation with carbon emission efficiency. In contrast, the substantial carbon emissions resulting from human respiration are a negative factor affecting carbon emission efficiency. (4) Over the forthcoming six years, the efficiency value of land use TCEI in the YRD urban cluster is forecasted to range between 0.65 and 0.75. Those cities with the highest performance are projected to achieve an efficiency value of 0.9480. Lastly, this research investigates the interaction between actors and land resources on TCEI, resulting in a beneficial understanding for the former to make strategic adjustments during the urbanization process.

摘要

城市群的土地利用是碳排放的主要来源,减少碳排放并提高土地利用效率是实现可持续发展目标(SDG)的关键。为了推进关于人口密集城市和高度商业化地区的文献研究,本研究采用两阶段动态数据包络分析(DEA),对2011年至2020年不同阶段中国长江三角洲(YRD)城市群27个城市的全要素碳排放效率指数(TCEI)进行了评估。该研究进行了回归分析和长短期记忆模型(LSTM),以分别筛选出影响因素并预测TCEI。结果表明如下:(1)2011年至2020年,27个城市的总体效率显著提高,且存在明显的空间异质性特征。(2)从阶段来看,大多数城市在初始阶段(能源消耗)的效率值超过第二阶段(可持续土地利用)。(3)在影响因素方面,城市绿地的碳捕获能力与碳排放效率显著正相关。相比之下,人类呼吸产生的大量碳排放是影响碳排放效率的负面因素。(4)在未来六年中,预计长三角城市群土地利用TCEI的效率值将在0.65至0.75之间。表现最佳的城市预计将实现0.9480的效率值。最后,本研究调查了行为主体与土地资源在TCEI方面的相互作用,有助于前者在城市化进程中进行战略调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7e1/11627399/21a781b1e286/pone.0311441.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验