Suppr超能文献

富勒烯及其单层网络在溶剂化环境中的光致电子-核动力学

Photoinduced Electron-Nuclear Dynamics of Fullerene and Its Monolayer Networks in Solvated Environments.

作者信息

Xu Qiang, Weinberg Daniel, Okyay Mahmut Sait, Choi Min, Del Ben Mauro, Wong Bryan M

机构信息

Department of Chemistry, Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States.

Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2024 Dec 25;146(51):35313-35320. doi: 10.1021/jacs.4c12952. Epub 2024 Dec 9.

Abstract

The recently synthesized monolayer fullerene network in a quasi-hexagonal phase (qHP-C) exhibits superior electron mobility and optoelectronic properties compared to molecular fullerene (C), making it highly promising for a variety of applications. However, the microscopic carrier dynamics of qHP-C remain unclear, particularly in realistic environments, which are of significant importance for applications in optoelectronic devices. Unfortunately, traditional methods are prohibitive for capturing the real-time carrier dynamics of such large systems due to their high computational cost. In this work, we present the first real-time electron-nuclear dynamics study of qHP-C using velocity-gauge density functional tight binding, which enables us to perform several picoseconds of excited-state electron-nuclear dynamics simulations for nanoscale systems with periodic boundary conditions. When applied to C, qHP-C, and their solvated counterparts, we demonstrate that water/moisture significantly increases the electron-hole recombination time in C but has little impact on qHP-C. Our excited-state electron-nuclear dynamics calculations show that qHP-C is extremely unique and enable exploration of time-resolved dynamics for understanding excited-state processes of large systems in complex, solvated environments.

摘要

最近合成的准六边形相单层富勒烯网络(qHP-C)与分子富勒烯(C)相比,具有卓越的电子迁移率和光电性能,这使其在各种应用中极具前景。然而,qHP-C的微观载流子动力学仍不明确,尤其是在实际环境中,而这对于光电器件的应用至关重要。不幸的是,传统方法由于计算成本高,无法用于捕获此类大型系统的实时载流子动力学。在这项工作中,我们首次使用速度规范密度泛函紧束缚方法对qHP-C进行实时电子-核动力学研究,这使我们能够对具有周期性边界条件的纳米级系统进行数皮秒的激发态电子-核动力学模拟。当应用于C、qHP-C及其溶剂化对应物时,我们证明水/湿气显著增加了C中的电子-空穴复合时间,但对qHP-C影响很小。我们的激发态电子-核动力学计算表明,qHP-C极其独特,并能够探索时间分辨动力学,以理解复杂溶剂化环境中大型系统的激发态过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8488/11673588/99271a838f08/ja4c12952_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验