Sogues Adrià, Leigh Kendra, Halingstad Ethan V, Van der Verren Sander E, Cecil Adam J, Fioravanti Antonella, Pak Alexander J, Kudryashev Misha, Remaut Han
Structural and Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB)-Vrije Universiteit Brussel (VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels 1050, Belgium.
Structural Biology Brussels, Department for Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2415351121. doi: 10.1073/pnas.2415351121. Epub 2024 Dec 9.
is a spore-forming gram-positive bacterium responsible for anthrax, an infectious disease with a high mortality rate and a target of concern due to bioterrorism and long-term site contamination. The entire surface of vegetative cells in exponential or stationary growth phase is covered in proteinaceous arrays called S-layers, composed of Sap or EA1 protein, respectively. The Sap S-layer represents an important virulence factor and cell envelope support structure whose paracrystalline nature is essential for its function. However, the spatial organization of Sap in its lattice state remains elusive. Here, we employed cryoelectron tomography and subtomogram averaging to obtain a map of the Sap S-layer from tubular polymers that revealed a conformational switch between the postassembly protomers and the previously available X-ray structure of the condensed monomers. To build and validate an atomic model of the lattice within this map, we used a combination of molecular dynamics simulations, X-ray crystallography, cross-linking mass spectrometry, and biophysics in an integrative structural biology approach. The Sap lattice model produced recapitulates a close-to-physiological arrangement, reveals high-resolution details of lattice contacts, and sheds light on the mechanisms underlying the stability of the Sap layer.
是一种形成芽孢的革兰氏阳性细菌,可引发炭疽病,这是一种死亡率很高的传染病,因生物恐怖主义和长期场地污染而备受关注。处于指数生长期或稳定期的营养细胞的整个表面都覆盖着称为S层的蛋白质阵列,分别由Sap或EA1蛋白组成。Sap S层是一种重要的毒力因子和细胞包膜支撑结构,其准晶体性质对其功能至关重要。然而,Sap在其晶格状态下的空间组织仍然难以捉摸。在这里,我们采用冷冻电子断层扫描和亚断层图平均技术,从管状聚合物中获得了Sap S层的图谱,揭示了组装后原体与先前可用的凝聚单体X射线结构之间的构象转换。为了构建和验证该图谱中晶格的原子模型,我们在综合结构生物学方法中结合了分子动力学模拟、X射线晶体学、交联质谱和生物物理学。所产生的Sap晶格模型概括了接近生理状态的排列,揭示了晶格接触的高分辨率细节,并阐明了Sap层稳定性的潜在机制。