Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
Nat Microbiol. 2019 Nov;4(11):1805-1814. doi: 10.1038/s41564-019-0499-1. Epub 2019 Jul 15.
Anthrax is an ancient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis. At present, anthrax mostly affects wildlife and livestock, although it remains a concern for human public health-primarily for people who handle contaminated animal products and as a bioterrorism threat due to the high resilience of spores, a high fatality rate of cases and the lack of a civilian vaccination programme. The cell surface of B. anthracis is covered by a protective paracrystalline monolayer-known as surface layer or S-layer-that is composed of the S-layer proteins Sap or EA1. Here, we generate nanobodies to inhibit the self-assembly of Sap, determine the structure of the Sap S-layer assembly domain (Sap) and show that the disintegration of the S-layer attenuates the growth of B. anthracis and the pathology of anthrax in vivo. Sap comprises six β-sandwich domains that fold and support the formation of S-layers independently of calcium. Sap-inhibitory nanobodies prevented the assembly of Sap and depolymerized existing Sap S-layers in vitro. In vivo, nanobody-mediated disruption of the Sap S-layer resulted in severe morphological defects and attenuated bacterial growth. Subcutaneous delivery of Sap inhibitory nanobodies cleared B. anthracis infection and prevented lethality in a mouse model of anthrax disease. These findings highlight disruption of S-layer integrity as a mechanism that has therapeutic potential in S-layer-carrying pathogens.
炭疽是一种由形成孢子的细菌病原体炭疽芽孢杆菌引起的古老而致命的疾病。目前,炭疽主要影响野生动物和牲畜,尽管它仍然是人类公共卫生的一个关注点,主要是因为人们处理受污染的动物产品,以及由于孢子的高弹性、高死亡率和缺乏民用疫苗接种计划,炭疽仍然是生物恐怖主义的威胁。B. anthracis 的细胞表面覆盖着一层保护性的准晶单层,称为表面层或 S 层,它由 S 层蛋白 Sap 或 EA1 组成。在这里,我们生成纳米抗体来抑制 Sap 的自组装,确定 Sap S 层组装结构域(Sap)的结构,并表明 S 层的解体减弱了 B. anthracis 的生长和炭疽在体内的病理。Sap 由六个β-三明治结构域组成,这些结构域折叠并独立于钙支持 S-层的形成。抑制 Sap 的纳米抗体可防止 Sap 组装并在体外解聚现有的 Sap S-层。在体内,纳米抗体介导的 Sap S-层的破坏导致严重的形态缺陷和细菌生长减弱。皮下递送 Sap 抑制性纳米抗体可清除炭疽感染,并在炭疽疾病的小鼠模型中预防致死性。这些发现强调了破坏 S 层完整性作为一种在携带 S 层的病原体中具有治疗潜力的机制。