Suppr超能文献

重新设计交联质谱中的误差控制可实现更稳健、更灵敏的蛋白质-蛋白质相互作用研究。

Redesigning error control in cross-linking mass spectrometry enables more robust and sensitive protein-protein interaction studies.

作者信息

Bogdanow Boris, Ruwolt Max, Ruta Julia, Mühlberg Lars, Wang Cong, Zeng Wen-Feng, Elofsson Arne, Liu Fan

机构信息

Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.

Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Mol Syst Biol. 2025 Jan;21(1):90-106. doi: 10.1038/s44320-024-00079-w. Epub 2024 Dec 9.

Abstract

Cross-linking mass spectrometry (XL-MS) allows characterizing protein-protein interactions (PPIs) in native biological systems by capturing cross-links between different proteins (inter-links). However, inter-link identification remains challenging, requiring dedicated data filtering schemes and thorough error control. Here, we benchmark existing data filtering schemes combined with error rate estimation strategies utilizing concatenated target-decoy protein sequence databases. These workflows show shortcomings either in sensitivity (many false negatives) or specificity (many false positives). To ameliorate the limited sensitivity without compromising specificity, we develop an alternative target-decoy search strategy using fused target-decoy databases. Furthermore, we devise a different data filtering scheme that takes the inter-link context of the XL-MS dataset into account. Combining both approaches maintains low error rates and minimizes false negatives, as we show by mathematical simulations, analysis of experimental ground-truth data, and application to various biological datasets. In human cells, inter-link identifications increase by 75% and we confirm their structural accuracy through proteome-wide comparisons to AlphaFold2-derived models. Taken together, target-decoy fusion and context-sensitive data filtering deepen and fine-tune XL-MS-based interactomics.

摘要

交联质谱法(XL-MS)能够通过捕获不同蛋白质之间的交联(互交联)来表征天然生物系统中的蛋白质-蛋白质相互作用(PPI)。然而,互交联的鉴定仍然具有挑战性,需要专门的数据过滤方案和全面的误差控制。在此,我们利用串联的目标-诱饵蛋白质序列数据库对现有的数据过滤方案与错误率估计策略进行了基准测试。这些工作流程在灵敏度(许多假阴性)或特异性(许多假阳性)方面都存在不足。为了在不影响特异性的情况下改善有限的灵敏度,我们开发了一种使用融合目标-诱饵数据库的替代目标-诱饵搜索策略。此外,我们设计了一种不同的数据过滤方案,该方案考虑了XL-MS数据集的互交联背景。正如我们通过数学模拟、实验真值数据分析以及应用于各种生物数据集所表明的那样,将这两种方法结合起来可保持低错误率并最大限度地减少假阴性。在人类细胞中,互交联的鉴定增加了75%,并且我们通过与基于AlphaFold2的模型进行全蛋白质组比较来确认它们的结构准确性。综上所述,目标-诱饵融合和上下文敏感的数据过滤深化并微调了基于XL-MS的相互作用组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f40a/11696718/55a03c44067e/44320_2024_79_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验