Suppr超能文献

机器学习揭示了接受神经外科会诊的创伤性脑损伤患者在姑息治疗时机上的人口统计学差异。

Machine Learning Reveals Demographic Disparities in Palliative Care Timing Among Patients With Traumatic Brain Injury Receiving Neurosurgical Consultation.

作者信息

Aude Carlos A, Vattipally Vikas N, Das Oishika, Ran Kathleen R, Giwa Ganiat A, Rincon-Torroella Jordina, Xu Risheng, Byrne James P, Muehlschlegel Susanne, Suarez Jose I, Mukherjee Debraj, Huang Judy, Azad Tej D, Bettegowda Chetan

机构信息

Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, 21287, MD, USA.

Division of Acute Care Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Neurocrit Care. 2024 Dec 10. doi: 10.1007/s12028-024-02172-2.

Abstract

BACKGROUND

Timely palliative care (PC) consultations offer demonstrable benefits for patients with traumatic brain injury (TBI), yet their implementation remains inconsistent. This study employs machine learning methods to identify distinct patient phenotypes and elucidate the primary drivers of PC consultation timing variability in TBI management, aiming to uncover disparities and inform more equitable care strategies.

METHODS

Data on admission, hospital course, and outcomes were collected for a cohort of 232 patients with TBI who received both PC consultations and neurosurgical consultations during the same hospitalization. Patient phenotypes were uncovered using principal component analysis and K-means clustering; time-to-PC consultation for each phenotype was subsequently compared by Kaplan-Meier analysis. An extreme gradient boosting model with Shapley Additive Explanations identified key factors influencing PC consultation timing.

RESULTS

Three distinct patient clusters emerged: cluster A (n = 86), comprising older adult White women (median 87 years) with mild TBI, received the earliest PC consultations (median 2.5 days); cluster B (n = 108), older adult White men (median 81 years) with mild TBI, experienced delayed PC consultations (median 5.0 days); and cluster C (n = 38), middle-aged (median: 46.5 years), severely injured, non-White patients, had the latest PC consultations (median 9.0 days). The clusters did not differ by discharge disposition (p = 0.4) or inpatient mortality (p > 0.9); however, Kaplan-Meier analysis revealed a significant difference in time-to-PC consultation (p < 0.001), despite no differences in time-to-mortality (p = 0.18). Shapley Additive Explanations analysis of the extreme gradient boosting model identified age, sex, and race as the most influential drivers of PC consultation timing.

CONCLUSIONS

This study unveils crucial disparities in PC consultation timing for patients with TBI, primarily driven by demographic factors rather than clinical presentation or injury characteristics. The identification of distinct patient phenotypes and quantification of factors influencing PC consultation timing provide a foundation for developing for standardized protocols and decision support tools to ensure timely and equitable palliative care access for patients with TBI.

摘要

背景

及时的姑息治疗(PC)会诊对创伤性脑损伤(TBI)患者有显著益处,但其实施情况仍不一致。本研究采用机器学习方法来识别不同的患者表型,并阐明TBI管理中PC会诊时间变异性的主要驱动因素,旨在发现差异并为更公平的护理策略提供依据。

方法

收集了232例TBI患者在同一住院期间接受PC会诊和神经外科会诊的入院、住院过程及结局数据。使用主成分分析和K均值聚类来揭示患者表型;随后通过Kaplan-Meier分析比较每种表型的PC会诊时间。具有Shapley加性解释的极端梯度提升模型确定了影响PC会诊时间的关键因素。

结果

出现了三个不同的患者群体:A组(n = 86),由患有轻度TBI的老年白人女性(中位数87岁)组成,最早接受PC会诊(中位数2.5天);B组(n = 108),患有轻度TBI的老年白人男性(中位数81岁),PC会诊延迟(中位数5.0天);C组(n = 38),中年(中位数:46.5岁)、严重受伤的非白人患者,PC会诊最晚(中位数9.0天)。这些群体在出院处置(p = 0.4)或住院死亡率(p > 0.9)方面没有差异;然而,Kaplan-Meier分析显示PC会诊时间存在显著差异(p < 0.001),尽管死亡时间没有差异(p = 0.18)。极端梯度提升模型的Shapley加性解释分析确定年龄、性别和种族是PC会诊时间最具影响力的驱动因素。

结论

本研究揭示了TBI患者在PC会诊时间上的关键差异,主要由人口统计学因素而非临床表现或损伤特征驱动。识别不同的患者表型以及量化影响PC会诊时间的因素为制定标准化方案和决策支持工具奠定了基础,以确保TBI患者能够及时获得公平的姑息治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验