Suppr超能文献

心血管疾病风险发展的决定因素,重点关注2型糖尿病以及利用机器学习算法的预测模型。

Determinants of developing cardiovascular disease risk with emphasis on type-2 diabetes and predictive modeling utilizing machine learning algorithms.

作者信息

Das Shatabdi, Rahman Riaz, Talukder Ashis

机构信息

Science Engineering and Technology School, Khulna University, Khulna, Bangladesh.

National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.

出版信息

Medicine (Baltimore). 2024 Dec 6;103(49):e40813. doi: 10.1097/MD.0000000000040813.

Abstract

This research aims to enhance our comprehensive understanding of the influence of type-2 diabetes on the development of cardiovascular diseases (CVD) risk, its underlying determinants, and to construct precise predictive models capable of accurately assessing CVD risk within the context of Bangladesh. This study combined data from the 2011 and 2017 to 2018 Bangladesh Demographic and Health Surveys, focusing on individuals with hypertension. CVD development followed World Health Organization (WHO) guidelines. Eight machine learning algorithms (Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbor, Light GBM, and XGBoost) were analyzed and compared using 6 evaluation metrics to assess model performance. The study reveals that individuals aged 35 to 54 years, 55 to 69 years, and ≥ 70 years face higher CVD risk with adjusted odds ratios (AOR) of 2.140, 3.015, and 3.963, respectively, compared to those aged 18 to 34 years. "Rich" respondents show increased CVD risk (AOR = 1.370, P < .01) compared to "poor" individuals. Also, "normal weight" (AOR = 1.489, P < .01) and "overweight/obese" (AOR = 1.871, P < .01) individuals exhibit higher CVD risk than "underweight" individuals. The predictive models achieve impressive performance, with 75.21% accuracy and an 80.79% AUC, with Random Forest (RF) excelling in specificity at 76.96%. This research holds practical implications for targeted interventions based on identified significant factors, utilizing ML models for early detection and risk assessment, enhancing awareness and education, addressing urbanization-related lifestyle changes, improving healthcare infrastructure in rural areas, and implementing workplace interventions to mitigate stress and promote physical activity.

摘要

本研究旨在增强我们对2型糖尿病对心血管疾病(CVD)风险发展的影响、其潜在决定因素的全面理解,并构建能够在孟加拉国背景下准确评估CVD风险的精确预测模型。本研究结合了2011年以及2017年至2018年孟加拉国人口与健康调查的数据,重点关注高血压患者。CVD的发展遵循世界卫生组织(WHO)的指南。使用6种评估指标对8种机器学习算法(支持向量机、逻辑回归、决策树、随机森林、朴素贝叶斯、K近邻、轻梯度提升机和极端梯度提升)进行了分析和比较,以评估模型性能。研究表明,与18至34岁的人群相比,35至54岁、55至69岁以及≥70岁的人群面临更高的CVD风险,调整后的优势比(AOR)分别为2.140、3.015和3.963。“富裕”受访者与“贫困”个体相比,CVD风险增加(AOR = 1.370,P <.01)。此外,“正常体重”(AOR = 1.489,P <.01)和“超重/肥胖”(AOR = 1.871,P <.01)个体比“体重过轻”个体表现出更高的CVD风险。预测模型取得了令人印象深刻的性能,准确率为75.21%,曲线下面积(AUC)为80.79%,随机森林(RF)在特异性方面表现出色,为76.96%。本研究对于基于已确定的重要因素进行有针对性的干预具有实际意义,利用机器学习模型进行早期检测和风险评估,提高认识和教育水平,应对与城市化相关的生活方式变化,改善农村地区的医疗基础设施,并实施工作场所干预措施以减轻压力和促进体育活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3029/11630972/a5ed78b620f3/medi-103-e40813-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验