Suppr超能文献

基于机器学习的慢性肺病患者心血管疾病风险评估

Machine learning-based risk assessment for cardiovascular diseases in patients with chronic lung diseases.

作者信息

Xi Huiming, Kang Qingxin, Jiang Xunsheng

机构信息

Department of Pulmonary and Critical Care Medicine, Nanchang People's Hospital, Nanchang, China.

出版信息

Medicine (Baltimore). 2025 Mar 7;104(10):e41672. doi: 10.1097/MD.0000000000041672.

Abstract

The association between chronic lung diseases (CLDs) and the risk of cardiovascular diseases (CVDs) has been extensively recognized. Nevertheless, conventional approaches for CVD risk evaluation cannot fully capture the risk factors (RFs) related to CLDs. This research sought to construct a CLD-specific CVD risk prediction model based on machine learning models and evaluate the prediction performance. The cross-sectional study design was adopted with data retrieved from Waves 1 and 3 of the China Health and Retirement Longitudinal Study, including 1357 participants. Multiple RFs were integrated into the models, including conventional RFs for CVDs, pulmonary function indicators, physical features, and measures of quality of life and psychological state. Four machine learning algorithms, including extreme gradient boosting (XGBoost), logistic regression, random forest, and support vector machine, were evaluated for prediction performance. The XGBoost model displayed superior performance to machine learning algorithms for predictive accuracy (area under the receiver operating characteristic curve [AUC]: 0.788, accuracy: 0.716, sensitivity: 0.615, specificity: 0.803). This model pinpointed the top 5 RFs for CLD-specific CVD RFs: body mass index, age, C-reactive protein, uric acid, and grip strength. Moreover, the prediction performance of the random forest model (AUC: 0.709, accuracy: 0.633) was higher relative to the logistic regression (AUC: 0.619, accuracy: 0.584) and support vector machine (AUC: 0.584, accuracy: 0.548) models. Nonetheless, these models performed less favorably compared to the XGBoost model. The XGBoost model presented the most accurate predictions for CLD-specific CVD risk. This multidimensional risk assessment approach offers a promising avenue for the establishment of personalized prevention strategies targeting CVD in patients with CLDs.

摘要

慢性肺部疾病(CLDs)与心血管疾病(CVDs)风险之间的关联已得到广泛认可。然而,传统的心血管疾病风险评估方法无法完全捕捉与慢性肺部疾病相关的风险因素(RFs)。本研究旨在基于机器学习模型构建特定于慢性肺部疾病的心血管疾病风险预测模型,并评估预测性能。采用横断面研究设计,数据取自中国健康与养老追踪调查的第1波和第3波,共纳入1357名参与者。多种风险因素被纳入模型,包括心血管疾病的传统风险因素、肺功能指标、身体特征以及生活质量和心理状态指标。评估了四种机器学习算法,包括极端梯度提升(XGBoost)、逻辑回归、随机森林和支持向量机的预测性能。XGBoost模型在预测准确性方面表现优于其他机器学习算法(受试者工作特征曲线下面积[AUC]:0.788,准确率:0.716,灵敏度:0.615,特异度:0.803)。该模型确定了特定于慢性肺部疾病的心血管疾病风险因素中排名前5的风险因素:体重指数、年龄、C反应蛋白、尿酸和握力。此外,随机森林模型(AUC:0.709,准确率:0.633)的预测性能高于逻辑回归模型(AUC:0.619,准确率:0.584)和支持向量机模型(AUC:0.584,准确率:0.548)。尽管如此,与XGBoost模型相比,这些模型的表现较差。XGBoost模型对特定于慢性肺部疾病的心血管疾病风险给出了最准确的预测。这种多维风险评估方法为制定针对慢性肺部疾病患者心血管疾病的个性化预防策略提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验