Suppr超能文献

使用介电复合纳米结构增强薄膜砷化镓太阳能电池的抗反射和吸收性能。

Enhanced antireflection and absorption in thin film GaAs solar cells using dielectric composite nanostructures.

作者信息

Wang Yanyan, Chen Jiali, Zhang Ruiying, Qian Min

机构信息

School of Optical and Electronic Information, Suzhou City University Suzhou, China.

Suzhou Key Laboratory of Biophotonics, Suzhou, China.

出版信息

Heliyon. 2024 Oct 22;10(23):e39665. doi: 10.1016/j.heliyon.2024.e39665. eCollection 2024 Dec 15.

Abstract

This study investigates the application of dielectric composite nanostructures (DCNs) to enhance both antireflection and absorption properties in thin film GaAs solar cells, which are crucial for reducing production costs and improving energy conversion efficiency in photovoltaic devices. Building upon previous experimental validations, this work systematically explores the underlying theoretical mechanisms using the finite difference time domain (FDTD) method to analyze the light interaction with the proposed DCNs. The results show that the combination of Mie resonance, Fabry-Perot resonance, and guided resonance, induced by the surface structuring of the DCNs, significantly enhances light absorption in the active layer, particularly at longer wavelengths. For solar cells featuring a 500-nm-thick absorber layer, SARL-decorated solar cells demonstrated an average reflectivity of 12.18 %, whereas those incorporating DCNs exhibited a significantly reduced average reflectivity of 4.52 %. These findings indicate that DCNs structures are highly effective in enhancing the performance of thin and ultra-thin GaAs solar cells by minimizing surface reflection and increasing photon utilization, offering a promising solution for high efficiency, cost effective photovoltaic devices.

摘要

本研究探讨了介电复合纳米结构(DCNs)在增强薄膜砷化镓太阳能电池的减反射和吸收特性方面的应用,这对于降低光伏器件的生产成本和提高能量转换效率至关重要。基于先前的实验验证,本工作利用时域有限差分(FDTD)方法系统地探索了潜在的理论机制,以分析光与所提出的DCNs的相互作用。结果表明,由DCNs的表面结构引起的米氏共振、法布里-珀罗共振和导模共振的组合,显著增强了有源层中的光吸收,特别是在较长波长处。对于具有500纳米厚吸收层的太阳能电池,用SARL装饰的太阳能电池的平均反射率为12.18%,而采用DCNs的太阳能电池的平均反射率则显著降低至4.52%。这些发现表明,DCNs结构通过最小化表面反射和提高光子利用率,在增强薄型和超薄型砷化镓太阳能电池的性能方面非常有效,为高效、经济的光伏器件提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c980/11625248/45556601d898/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验