Suppr超能文献

端到端变分量子传感

End-to-end variational quantum sensing.

作者信息

MacLellan Benjamin, Roztocki Piotr, Czischek Stefanie, Melko Roger G

机构信息

University of Waterloo, Department of Physics & Astronomy, 200 University Ave., Waterloo, ON Canada.

Institute for Quantum Computing, 200 University Ave., Waterloo, ON Canada.

出版信息

npj Quantum Inf. 2024;10(1):118. doi: 10.1038/s41534-024-00914-w. Epub 2024 Nov 19.

Abstract

Harnessing quantum correlations can enable sensing beyond classical precision limits, with the realization of such sensors poised for transformative impacts across science and engineering. Real devices, however, face the accumulated impacts of noise and architecture constraints, making the design and success of practical quantum sensors challenging. Numerical and theoretical frameworks to optimize and analyze sensing protocols in their entirety are thus crucial for translating quantum advantage into widespread practice. Here, we present an end-to-end variational framework for quantum sensing protocols, where parameterized quantum circuits and neural networks form trainable, adaptive models for quantum sensor dynamics and estimation, respectively. The framework is general and can be adapted towards arbitrary qubit architectures, as we demonstrate with experimentally-relevant ansätze for trapped-ion and photonic systems, and enables to directly quantify the impacts that noise and finite data sampling. End-to-end variational approaches can thus underpin powerful design and analysis tools for practical quantum sensing advantage.

摘要

利用量子关联能够实现超越经典精度极限的传感,此类传感器的实现有望在科学和工程领域产生变革性影响。然而,实际设备面临噪声和架构限制的累积影响,这使得实用量子传感器的设计与成功面临挑战。因此,用于整体优化和分析传感协议的数值和理论框架对于将量子优势转化为广泛应用至关重要。在此,我们提出了一种用于量子传感协议的端到端变分框架,其中参数化量子电路和神经网络分别构成了用于量子传感器动力学和估计的可训练自适应模型。该框架具有通用性,可适用于任意量子比特架构,正如我们用与捕获离子和光子系统相关的实验性量子态 ansätze 所证明的那样,并且能够直接量化噪声和有限数据采样的影响。端到端变分方法因此可以为实用量子传感优势提供强大的设计和分析工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba82/11627216/6afc62426c2f/41534_2024_914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验