Suppr超能文献

可编程量子传感器的最优计量学。

Optimal metrology with programmable quantum sensors.

作者信息

Marciniak Christian D, Feldker Thomas, Pogorelov Ivan, Kaubruegger Raphael, Vasilyev Denis V, van Bijnen Rick, Schindler Philipp, Zoller Peter, Blatt Rainer, Monz Thomas

机构信息

Institut für Experimentalphysik, Innsbruck, Austria.

Institute for Quantum Optics and Quantum Information, Innsbruck, Austria.

出版信息

Nature. 2022 Mar;603(7902):604-609. doi: 10.1038/s41586-022-04435-4. Epub 2022 Mar 23.

Abstract

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

摘要

量子传感器是一项成熟的技术,为整个科学领域的精密传感创造了新机遇。利用纠缠实现量子增强将使我们能够构建下一代传感器,使其接近量子物理所允许的精密极限。然而,确定如何利用最先进的传感平台达到这些极限是一项突出的挑战。在此,我们将量子信息处理领域的概念与计量学相结合,并在实验中成功实现了一个可编程量子传感器,其运行接近量子力学定律所施加的基本极限。我们通过使用低深度、参数化量子电路来实现这一点,该电路为囚禁离子实验中的传感任务实现了最优输入态和测量算符。使用26个离子,我们达到了基本传感极限的1.45±0.01倍,比传统自旋压缩方法性能高出1.87±0.03倍。与未使用基于纠缠协议的传统方法相比,我们的方法将达到给定阿伦偏差所需的平均次数减少了1.59±0.06倍。我们还进行了设备上的量子 - 经典反馈优化,以“自校准”具有可比性能的可编程量子传感器。这种能力表明,这种下一代量子传感器在无需事先了解设备或其噪声环境的情况下即可使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验