Suppr超能文献

免疫相关代谢基因的特征可预测肝细胞癌的预后。

Signature of immune-related metabolic genes predicts the prognosis of hepatocellular carcinoma.

作者信息

Zhuo Weibin, Xia Hongmei, Lan Bin, Chen Yu, Wang Xuefeng, Liu Jingfeng

机构信息

Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.

Huzhou Central Hospital, Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.

出版信息

Front Immunol. 2024 Nov 25;15:1481331. doi: 10.3389/fimmu.2024.1481331. eCollection 2024.

Abstract

INTRODUCTION

The majority of liver cancer cases (90%) are attributed to hepatocellular carcinoma (HCC), which exhibits significant heterogeneity and an unfavorable prognosis. Modulating the immune response and metabolic processes play a crucial role in both the prevention and treatment of HCC. However, there is still a lack of comprehensive understanding regarding the immune-related metabolic genes that can accurately reflect the prognosis of HCC.

METHODS

In order to address this issue, we developed a prognostic prediction model based on immune and metabolic genes. To evaluate the accuracy of our model, we performed survival analyses including Kaplan-Meier (K-M) curve and time-dependent receiver operating characteristic (ROC) curve. Furthermore, we compared the predictive performance of our risk model with existing models. Finally, we validated the accuracy of our risk model using mouse models with transplanted liver cancer.

RESULTS

By conducting lasso regression analysis, we identified four independent prognostic genes: fatty acid binding protein 6 (FABP6), phosphoribosyl pyrophosphate amidotransferase (PPAT), spermine synthase (SMS), and dihydrodiol dehydrogenase (DHDH). Based on these findings, we constructed a prognostic model. Survival analysis revealed that the high-risk group had significantly lower overall survival (OS) rates. Besides that, the ROC curve demonstrated the effective prognostic capability of our risk model for hepatocellular carcinoma (HCC) patients. Furthermore, through animal experiments, we validated the accuracy of our model by showing a correlation between high-risk scores and poor prognosis in tumor development.

DISCUSSION

In conclusion, our prognostic model surpasses those solely based on immune genes or metabolic genes in terms of accuracy. We observed variations in prognosis among different risk groups, accompanied by distinct immune and metabolic characteristics. Therefore, our model provides an original evaluation index for personalized clinical treatment strategies targeting HCC patients.

摘要

引言

大多数肝癌病例(90%)归因于肝细胞癌(HCC),其具有显著的异质性和不良预后。调节免疫反应和代谢过程在HCC的预防和治疗中都起着关键作用。然而,对于能够准确反映HCC预后的免疫相关代谢基因,仍缺乏全面的了解。

方法

为了解决这个问题,我们开发了一种基于免疫和代谢基因的预后预测模型。为了评估我们模型的准确性,我们进行了生存分析,包括Kaplan-Meier(K-M)曲线和时间依赖性受试者工作特征(ROC)曲线。此外,我们将我们的风险模型与现有模型的预测性能进行了比较。最后,我们使用移植肝癌的小鼠模型验证了我们风险模型的准确性。

结果

通过lasso回归分析,我们确定了四个独立的预后基因:脂肪酸结合蛋白6(FABP6)、磷酸核糖焦磷酸酰胺转移酶(PPAT)、精胺合酶(SMS)和二氢二醇脱氢酶(DHDH)。基于这些发现,我们构建了一个预后模型。生存分析显示,高危组的总生存率(OS)显著较低。除此之外,ROC曲线证明了我们的风险模型对肝细胞癌(HCC)患者具有有效的预后能力。此外,通过动物实验,我们通过显示高危评分与肿瘤发展中不良预后之间的相关性,验证了我们模型的准确性。

讨论

总之,我们的预后模型在准确性方面优于仅基于免疫基因或代谢基因的模型。我们观察到不同风险组之间预后存在差异,同时伴有不同的免疫和代谢特征。因此,我们的模型为针对HCC患者的个性化临床治疗策略提供了一个原创的评估指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bad/11625796/06d7e064436c/fimmu-15-1481331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验