Suppr超能文献

基于脑电图的认知负荷检测的实验范式和深度神经网络的系统综述。

Systematic review of experimental paradigms and deep neural networks for electroencephalography-based cognitive workload detection.

作者信息

K N Vishnu, Gupta Cota Navin

机构信息

Neural Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.

出版信息

Prog Biomed Eng (Bristol). 2024 Oct 21;6(4). doi: 10.1088/2516-1091/ad8530.

Abstract

This article summarizes a systematic literature review of deep neural network-based cognitive workload (CWL) estimation from electroencephalographic (EEG) signals. The focus of this article can be delineated into two main elements: first is the identification of experimental paradigms prevalently employed for CWL induction, and second, is an inquiry about the data structure and input formulations commonly utilized in deep neural networks (DNN)-based CWL detection. The survey revealed several experimental paradigms that can reliably induce either graded levels of CWL or a desired cognitive state due to sustained induction of CWL. This article has characterized them with respect to the number of distinct CWL levels, cognitive states, experimental environment, and agents in focus. Further, this literature analysis found that DNNs can successfully detect distinct levels of CWL despite the inter-subject and inter-session variability typically observed in EEG signals. Several methodologies were found using EEG signals in its native representation of a two-dimensional matrix as input to the classification algorithm, bypassing traditional feature selection steps. More often than not, researchers used DNNs as black-box type models, and only a few studies employed interpretable or explainable DNNs for CWL detection. However, these algorithms were mostly post hoc data analysis and classification schemes, and only a few studies adopted real-time CWL estimation methodologies. Further, it has been suggested that using interpretable deep learning methodologies may shed light on EEG correlates of CWL, but this remains mostly an unexplored area. This systematic review suggests using networks sensitive to temporal dependencies and appropriate input formulations for each type of DNN architecture to achieve robust classification performance. An additional suggestion is to utilize transfer learning methods to achieve high generalizability across tasks (task-independent classifiers), while simple cross-subject data pooling may achieve the same for subject-independent classifiers.

摘要

本文总结了一项基于脑电图(EEG)信号的深度神经网络认知工作量(CWL)估计的系统文献综述。本文的重点可分为两个主要方面:一是识别常用于诱导CWL的实验范式,二是探究基于深度神经网络(DNN)的CWL检测中常用的数据结构和输入形式。该调查揭示了几种实验范式,这些范式可以可靠地诱导出不同程度的CWL或由于持续诱导CWL而产生的期望认知状态。本文根据不同CWL水平的数量、认知状态、实验环境和关注的主体对它们进行了描述。此外,这项文献分析发现,尽管EEG信号中通常存在个体间和会话间的变异性,但DNN仍能成功检测出不同水平的CWL。研究发现,有几种方法使用二维矩阵形式的EEG信号作为分类算法的输入,绕过了传统的特征选择步骤。研究人员大多将DNN用作黑箱式模型,只有少数研究采用可解释的DNN进行CWL检测。然而,这些算法大多是事后数据分析和分类方案,只有少数研究采用实时CWL估计方法。此外,有人提出使用可解释的深度学习方法可能有助于揭示CWL的EEG相关性,但这在很大程度上仍是一个未被探索的领域。这项系统综述建议,对于每种类型的DNN架构,使用对时间依赖性敏感的网络和适当的输入形式,以实现稳健的分类性能。另一个建议是利用迁移学习方法在不同任务中实现高通用性(任务无关分类器),而简单的跨主体数据合并对于主体无关分类器可能也能达到同样的效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验