Suppr超能文献

TargetSA:用于靶向药物设计的自适应模拟退火算法

TargetSA: adaptive simulated annealing for target-specific drug design.

作者信息

Xue Zhe, Sun Chenwei, Zheng Wenhao, Lv Jiancheng, Liu Xianggen

机构信息

College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China.

Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae730.

Abstract

MOTIVATION

The burgeoning field of target-specific drug design has attracted considerable attention, focusing on identifying compounds with high binding affinity toward specific target pockets. Nevertheless, existing target-specific deep generative models encounter notable challenges. Some models heavily rely on elaborate datasets and complicated training methodologies, while others neglect the multi-constraint optimization problem inherent in drug design, resulting in generated molecules with irrational structures or chemical properties.

RESULTS

To address these issues, we propose a novel framework (TargetSA) that leverages adaptive simulated annealing (SA) for target-specific molecular generation and multi-constraint optimization. The SA process explores the discrete structural space of molecules, progressively converging toward the optimal solution that fulfills the predefined objective. To propose novel compounds, we first predict promising editing positions based on historical experience, and then iteratively edit molecular graphs through four operations (insertion, replacement, deletion, and cyclization). Together, these operations collectively constitute a complete operation set, facilitating a thorough exploration of the drug-like space. Furthermore, we introduce a reversible sampling strategy to re-accept currently suboptimal solutions, greatly enhancing the generation quality. Empirical evaluations demonstrate that TargetSA achieves state-of-the-art performance in generating high-affinity molecules (average vina dock -9.09) while maintaining desirable chemical properties.

AVAILABILITY AND IMPLEMENTATION

https://github.com/XueZhe-Zachary/TargetSA.

摘要

动机

靶向特定药物设计这一新兴领域已吸引了相当多的关注,其重点在于识别对特定靶点口袋具有高结合亲和力的化合物。然而,现有的靶向特定深度生成模型面临显著挑战。一些模型严重依赖精心构建的数据集和复杂的训练方法,而另一些则忽略了药物设计中固有的多约束优化问题,导致生成的分子结构或化学性质不合理。

结果

为解决这些问题,我们提出了一种新颖的框架(TargetSA),该框架利用自适应模拟退火(SA)进行靶向特定分子生成和多约束优化。SA过程探索分子的离散结构空间,逐步趋向于满足预定义目标的最优解。为了提出新的化合物,我们首先基于历史经验预测有前景的编辑位置,然后通过四种操作(插入、替换、删除和环化)迭代编辑分子图。这些操作共同构成一个完整的操作集,有助于全面探索类药物空间。此外,我们引入了一种可逆采样策略来重新接受当前次优解,极大地提高了生成质量。实证评估表明,TargetSA在生成高亲和力分子(平均vina对接值为-9.09)方面达到了当前最优性能,同时保持了理想的化学性质。

可用性和实现方式

https://github.com/XueZhe-Zachary/TargetSA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a3/12013812/c8c51713a889/btae730f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验